目前网络架构(网络体系结构与网络架构)

网络设计 1065
本篇文章给大家谈谈目前网络架构,以及网络体系结构与网络架构对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。 本文目录一览: 1、常见的网络构架不包括 2、

本篇文章给大家谈谈目前网络架构,以及网络体系结构与网络架构对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。

本文目录一览:

常见的网络构架不包括

常见的网络构架包括:线性构架、二维表结构、等级结构、网状结构。

常见的网络构架不包括:功能构架。

5G网络架构有哪几种?

5G有两种组网架构,分别是NSA与SA。

NSA:非独立组网架构,意思是此架构下,5G必须依赖4G网络来部署。5G终端与核心网之间***用4G的协议栈架构实现,4G核心网只要经过简单的升级就可以支持NSA,实现5G基站接入。NSA终端需要支持同时接入到4G基站与5G基站(称为双连接),在此架构中,5G基站主要是发挥其高带宽的特性,提升用户数据的传输能力。***用NSA架构可以快速建设5G网络,建设成本低。

SA:独立组网架构,就是说5G独立组网,不依赖4G网络。在此架构中,终端不需要接入4G基站,所有的信令与数据都由5G基站完成。此时,必须新建全新的5G核心网,5G核心网引入了很多新的技术特性(如服务化架构等),一般***用虚拟化技术部署在数据中心,建设成本较高。

SA架构,引入了很多新的特性,最重要的特性是切片(其意思是在一张网络上构建出多张独立的虚拟网络,满足不同的业务需求)。SA网络是NSA网络的演进方向。

目前全球已经建成的5G网络,绝大部分都是NSA,只有少量的5G网络是SA。我国三个运营商已经***用SA架构建成了世界上最大、最先进的5G网络,是值得骄傲的事情。

什么是网络架构?

问题一:网络架构是什么 传统的网络架构:星型、环形、总线型,其实最重要的还是交换技术:以太网、令牌环和FDDI、atm。

网络架构,是物理层面的。交换技术是一种信息传递技术,网络架构是交换技术的载体。

OSI是一个开放性的通行系统互连参考模型,他是一个定义的非常好的协议规范。OSI模型有7层结构,每层都可以有几个子层。七层都是什么应该知道吧。

问题二:网络架构师是做什么的? 网络架构师英文叫Internet architect。

平时的工作就是负责网络技术架构选型、并主导功能模块设计、数据结构设计、对外接口设计;负责与相关技术合作团队的技术协调;对各种前瞻技术进行预研并形成企业内部是否引入以及如何引入的建议;负责现有产品的的运营数据分析、用户反馈收集和功能优化;负责跟踪竞争对手动态、新产品调研分析;负责协调网站产品的创意、策划、改版、网站系统功能策划等工作;负责网站产品栏目、需求的分析规划和细化工作;负责项目上线后的日常运营管理,提供不同阶段栏目规划和实施状态报告;负责优化项目的用户体验,提升亲和力和易用性。

大学专业学的是计算机专业。年薪10-15万。适合有出色的组织能力和表达能力,良好的沟通技巧,能够承受工作压力,良好的沟通、协调能力和团队协作精神,逻辑分析能力强,具备快速抽象业务和分析问题的能力的人去做。

问题三:TCP/IP网络结构的核心是什么? 路由器和交换设备

问题四:LTE的网络结构是什么 LTE网络特点

与传统3G网络比较,LTE的网络结更加简单扁平,降低组网成本,增加组网灵活性,主要特点表现在:

网络扁平化使得系统延时减少,从而改善用户体验,可开展更多业务;

网元数目减少,E-UTRAN只有一种节点网元E-Node B,使得网络部署更为简单,网络的维护更加容易;

取消了RNC的集中控制,避免单点故障,有利于提高网络稳定性;

LTE-扁平化接入网络架构

LTE的主要网元包括:

E-UTRAN(接入网):e-NodeB组成

EPC(核心网):MME,S-GW,P-GW

LTE的网络接口包括:

X2接口:e-NodeB之间的接口,支持数据和信令的直接传输

S1接口:连接e-NodeB与核心网EPC的接口

S1-MME:e-NodeB连接MME的控制面接口

S1-U: e-NodeB连接S-GW 的用户面接口

E-Node B

具有现3GPP Node B全部和RNC大部分功能,包括:

物理层功能

MAC、RLC、PDCP功能

RRC功能

***调度和无线***管理

无线接入控制

移动性管理

MME

NAS信令以及安全性功能

3GPP接入网络移动性导致的CN节点间信令

空闲模式下UE跟踪和可达性

漫游

鉴权

承载管理功能(包括专用承载的建立)

Serving GW

支持UE的移动性切换用户面数据的功能

E-UTRAN空闲模式下行分组数据缓存和寻呼支持

数据包路由和转发

上下行传输层数据包标记

PDN GW

基于用户的包过滤

合法监听

IP地址分配

上下行传输层数据包标记

DHCPv4和DHCPv6(client、relay、server)

问题五:什么是网络架构? 网络架构是网络的基本结构,可以分为功能上的架构,如行为/流程,和逻辑上的架构,如***/需求

问题六:计算机网络结构分几种?哪几种? 计算机网络的分类方式有很多种,可以按地理范围、拓扑结构、传输速率和传输介质等分类。

⑴按地理范围分类

①局域网LAN(Local Area Network)

局域网地理范围一般几百米到10km之内,属于小范围内的连网。如一个建筑物内、一个学校内、一个工厂的厂区内等。局域网的组建简单、灵活,使用方便。

②城域网MAN(Metropolitan Area Network)

城域网地理范围可从几十公里到上百公里,可覆盖一个城市或地区,是一种中等形式的网络。

③广域网WAN(Wide Area Network)

广域网地理范围一般在几千公里左右,属于大范围连网。如几个城市,一个或几个国家,是网络系统中的最大型的网络,能实现大范围的***共享,如国际性的Internet网络。

⑵按传输速率分类

网络的传输速率有快有慢,传输速率快的称高速网,传输速率慢的称低速网。传输速率的单位是b/s(每秒比特数,英文缩写为bps)。一般将传输速率在Kb/s―Mb/s范围的网络称低速网,在Mb/s―Gb/s范围的网称高速网。也可以将Kb/s网称低速网,将Mb/s网称中速网,将Gb/s网称高速网。

网络的传输速率与网络的带宽有直接关系。带宽是指传输信道的宽度,带宽的单位是Hz(赫兹)。按照传输信道的宽度可分为窄带网和宽带网。一般将KHz―MHz带宽的网称为窄带网,将MHz―GHz的网称为宽带网,也可以将kHz带宽的网称窄带网,将MHz带宽的网称中带网,将GHz带宽的网称宽带网。通常情况下,高速网就是宽带网,低速网就是窄带网。

⑶按传输介质分类

传输介质是指数据传输系统中发送装置和接受装置间的物理媒体,按其物理形态可以划分为有线和无线两大类。

①有线网

传输介质***用有线介质连接的网络称为有线网,常用的有线传输介质有双绞线、同轴电缆和光导纤维。

●双绞线是由两根绝缘金属线互相缠绕而成,这样的一对线作为一条通信线路,由四对双绞线构成双绞线电缆。双绞线点到点的通信距离一般不能超过100m。目前,计算机网络上使用的双绞线按其传输速率分为三类线、五类线、六类线、七类线,传输速率在10Mbps到600Mbps之间,双绞线电缆的连接器一般为RJ-45。

●同轴电缆由内、外两个导体组成,内导体可以由单股或多股线组成,外导体一般由金属编织网组成。内、外导体之间有绝缘材料,其阻抗为50Ω。同轴电缆分为粗缆和细缆,粗缆用DB-15连接器,细缆用BNC和T连接器。

●光缆由两层折射率不同的材料组成。内层是具有高折射率的玻璃单根纤维体组成,外层包一层折射率较低的材料。光缆的传输形式分为单模传输和多模传输,单模传输性能优于多模传输。所以,光缆分为单模光缆和多模光缆,单模光缆传送距离为几十公里,多模光缆为几公里。光缆的传输速率可达到每秒几百兆位。光缆用ST或SC连接器。光缆的优点是不会受到电磁的干扰,传输的距离也比电缆远,传输速率高。光缆的安装和维护比较困难,需要专用的设备。

②无线网

***用无线介质连接的网络称为无线网。目前无线网主要***用三种技术:微波通信,红外线通信和激光通信。这三种技术都是以大气为介质的。其中微波通信用途最广,目前的卫星网就是一种特殊形式的微波通信,它利用地球同步卫星作中继站来转发微波信号,一个同步卫星可以覆盖地球的三分之一以上表面,三个同步卫星就可以覆盖地球上全部通信区域。

⑷按拓扑结构分类

计算机网络的物理连接形式叫做网......

问题七:tcp/ip网络结构的核心是什么 路由器和交换机

计算机网络的拓扑结构有哪些类型?

计算机网络的最主要的拓扑结构有总线型拓扑、环形拓扑、树形拓扑、星形拓扑、混合型拓扑以及网状拓扑。除了总线型、环型、星型还有树形、混合型和网状拓扑结构。

环形拓扑、星形拓扑、总线型拓扑是三个最基本的拓扑结构。在局域网中,使用最多的是星形结构。

1、总线型拓扑:

总线型拓扑是一种基于多点连接的拓扑结构,是将网络中的所有的设备通过相应的硬件接口直接连接在共同的传输介质上。总线拓扑结构使用一条所有PC都可访问的公共通道,每台PC只要连一条线缆即可。在总线型拓扑结构中,所有网上微机都通过相应的硬件接口直接连在总线上, 任何一个结点的信息都可以沿着总线向两个方向传输扩散,并且能被总线中任何一个结点所接收。

由于其信息向四周传播,类似于广播电台,故总线型网络也被称为广播式网络。 总线有一定的负载能力,因此,总线长度有一定限制,一条总线也只能连接一定数量的结点。 最著名的总线拓扑结构是以太网(Ethernet)。

总线布局的特点:结构简单灵活,非常便于扩充;可靠性高,网络响应速度快;设备量少、价格低、安装使用方便;共享***能力强,非常便于广播式工作,即一个结点发送所有结点都可接收。

在总线两端连接的器件称为端结器(末端阻抗匹配器、或终止器),主要与总线进行阻抗匹配,最大限度地吸收传送端部的能量,避免信号反射回总线产生不必要的干扰。

总线型网络结构是目前使用最广泛的结构,也是最传统的一种主流网络结构,适合于信息管理系统、办公自动化系统领域的应用。

2、环型拓扑:

环形网中各结点通过环路接口连在一条首尾相连的闭合环形通信线路中,就是把每台PC连接起来,数据沿着环依次通过每台PC直接到达目的地,环路上任何结点均可以请求发送信息。请求一旦被批准,便可以向环路发送信息。环形网中的数据可以是单向也可是双向传输。信息在每台设备上的延时时间是固定的。

由于环线公用,一个结点发出的信息必须穿越环中所有的环路接口,信息流中目的地址与环上某结点地址相符时,信息被该结点的环路接口所接收,而后信息继续流向下一环路接口,一直流回到发送该信息的环路接口结点为止。 特别适合实时控制的局域网系统。 在环行结构中每台PC都与另两台PC相连每台PC的接口适配器必须接收数据再传往另一台。因为两台PC之间都有电缆,所以能获得好的性能。 最著名的环形拓扑结构网络是令牌环网(Token Ring)。

3、树形拓扑结构:

树形拓扑从总线拓扑演变而来,形状像一棵倒置的树,顶端是树根,树根以下带分支,每个分支还可再带子分支。 它是总线型结构的扩展,它是在总线网上加上分支形成的,其传输介质可有多条分支,但不形成闭合回路,树形网是一种分层网,其结构可以对称,联系固定,具有一定容错能力,一般一个分支和结点的故障不影响另一分支结点的工作,任何一个结点送出的信息都可以传遍整个传输介质,也是广播式网络。

一般树形网上的链路相对具有一定的专用性,无须对原网做任何改动就可以扩充工作站。 它是一种层次结构,结点按层次连结,信息交换主要在上下结点之间进行,相邻结点或 同层结点之间一般不进行数据交换。把整个电缆连接成树型,树枝分层每个分至点都有一台计算机,数据依次往下传优点是布局灵活但是故障检测较为复杂,PC环不会影响全局。

4、星形拓扑结构:

星形拓扑结构是一种以中央节点为中心,把若干*** 节点连接起来的辐射式互联结构,各结点与中央结点通过点与点方式连接,中央结点执行集中式通信控制策略,因此中央结点相当复杂,负担也重。 这种结构适用于局域网,特别是近年来连接的局域网大都***用这种连接方式。

这种连接方式以双绞线或同轴电缆作连接线路。在中心放一台中心计算机,每个臂的端点放置一台PC,所有的数据包及报文通过中心计算机来通信,除了中心机外每台PC仅有一条连接,这种结构需要大量的电缆,星形拓扑可以看成一层的树形结构,不需要多层PC的访问权争用。星形拓扑结构在网络布线中较为常见。

以星形拓扑结构组网,其中任何两个站点要进行通信都要经过中央结点控制。中央节点的主要功能有:为需要通信的设备建立物理连接;为两台设备通信过程中维持这一通路;在完成通信或不成功时,拆除通道。

在文件服务器/工作站(File Servers/Workstation)局域网模式中,中心点为文件服务器,存放共享***。由于这种拓扑结构,中心点与多台工作站相连,为便于集中连线,目前多***用集线器(HUB)。

5、网状拓扑:

网状拓扑又称作无规则结构,结点之间的联结是任意的,没有规律。就是将多个子网或多个局域网连接起来构成网际拓扑结构。在一个子网中,集线器、中继器将多个设备连接起来,而桥接器、路由器及***则将子网连接起来。根据组网硬件不同,主要有三种网际拓扑。

(1)网状网:在一个大的区域内,用无线电通信连路连接一个大型网络时,网状网是最好的拓扑结构。通过路由器与路由器相连,可让网络选择一条最快的路径传送数据。

(2)主干网:通过桥接器与路由器把不同的子网或LAN连接起来形成单个总线或环型拓扑结构,这种网通常***用光纤做主干线。

(3)星状相连网:利用一些叫做超级集线器的设备将网络连接起来,由于星型结构的特点,网络中任一处的故障都可容易查找并修复。

应该指出,在实际组网中,为了符合不同的要求,拓扑结构不一定是单一的,往往都是几种结构的混用。

6、混合型拓扑结构:

混合型拓扑结构就是两种或两种以上的拓扑结构同时使用。

7、蜂窝拓扑结构:

蜂窝拓扑结构是无线局域网中常用的结构。

参考资料来源:百度百科 - 拓扑结构

常见的网络架构有哪些

常见的网络拓扑结构有以下几种:1.总线型网络拓扑结构;2.星型网络拓扑结构;3.环形网络拓扑结构;4.树型网络拓扑结构;5.网状网络拓扑结构;6.混合网络型拓扑结构。网络拓扑结构是指用传输媒体对各种设备进行连接的物理布局。

1.总线型网络拓扑结构

总线型结构是将网络中的所有设备通过相应的硬件接口直接连接到公共总线上,结点之间按广播方式通信,一个结点发出的信息,总线上的其它结点均可“收听”到。 总线型结构就像一张树叶,有一条主干线,主干线上面由很多分支。

2.星型网络拓扑结构

星型结构是一种以中央节点为中心,把若干*** 节点连接起来的辐射式互联结构。这种结构适用于局域网,特别是近年来连接的局域网大都***用这种连接方式。这种连接方式以双绞线或同轴电缆作连接线路。

3.环形网络拓扑结构

环形结构各结点通过通信线路组成闭合回路,环中数据只能单向传输,信息在每台设备上的延时时间是固定的,特别适合实时控制的局域网系统。环形结构就如一串珍珠项链,环形结构上的每台计算机就是项链上的一个个珠子。

4.树型网络拓扑结构

树型拓扑结构是一种层次结构,结点按层次连结,信息交换主要在上下结点之间进行,相邻结点或同层结点之间一般不进行数据交换。树型拓扑结构是就是数据结构中的树。

5.网状网络拓扑结构

网络拓扑结构又称作无规则结构,结点之间的联结是任意的,没有规律。

6.混合网络型拓扑结构

混合型网络拓扑结构就是指同时使用上面的5种网络拓扑结构种两种或两种以上的网络拓扑结构。

什么网络结构是目前应用最普遍的网络结构呢?

1、总线型:

优点:

(1)布线要求简单;

(2)扩充容易,端用户失效、增删不影响全网工作。

缺点:

(1)传输速度慢,一次仅能一个端用户发送数据;

(2)媒体访问获取机制较复杂;

(3)网络可靠性差,维护难,任意一节点出现问题会导致整个网瘫痪。

2、环形

优点:

(1)信息流在网中是沿着固定方向流动的,两个节点仅有一条道路,故简化了路径选择的控制;

(2)环路上各节点都是自举控制,故控制软件简单;

缺点:

(1)由于信息源在环路中是串行地穿过各个节点,当环中节点过多时,势必影响信息传输速率,使网络的响应时间延长;

(2)环路是封闭的,不便于扩充;

(3)可靠性低,一个节点故障,将会造成全网瘫痪;维护难,对分支节点故障定位较难。

3、星型

优点:

(1)控制简单。任何一站点只和中央节点相连接,因而介质访问控制方法简单,致使访问协议也十分简单。易于网络监控和管理。

(2)故障诊断和隔离容易。中央节点对连接线路可以逐一隔离进行故障检测和定位,单个连接点的故障只影响一个设备,不会影响全网。

(3)方便服务。中央节点可以方便地对各个站点提供服务和网络重新配置。

缺点:

(1)需要耗费大量的电缆,安装、维护的工作量也骤增。

(2)中央节点负担重,形成“瓶颈” ,一旦发生故障,则全网受影响。

(3)各站点的分布处理能力较低。

扩展资料

按网络拓扑结构可分为总线型拓扑、星型拓扑、环型拓扑、树型拓扑、网状拓扑。

总线型拓扑:所有结点共享一条传输通道,一个结点发出的信息可以被网络上的多个结点接收,又称广播式的网络。

星型拓扑:一种以中央结点为中心,把若干*** 节点连接起来的结构。

环型拓扑:结点通过点到点通信线路连接成闭合环路。环中数据将沿一个方向逐站传送。

树型拓扑:网络中的各结点形成一个层次化的结构

网状拓扑:各结点之间的连接是任意的,没有规律的。在传输过程中,即使有一条线路出现故障也不会影响正常的网络数据传输。

参考资料:百度百科 - 星型拓扑

目前网络架构的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于网络体系结构与网络架构、目前网络架构的信息别忘了在本站进行查找喔。

扫码二维码