移动网络架构图(移动通信网络基本结构)
本篇文章给大家谈谈移动网络架构图,以及移动通信网络基本结构对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。
本文目录一览:
求一张网络三层架构的图
三层网络架构是***用层次化架构的三层网络。
三层网络架构设计的网络有三个层次:核心层(网络的高速交换主干)、汇聚层(提供基于策略的连接)、接入层 (将工作站接入网络)。
扩展资料:
三层网络结构短板
1、不断地改变的三层网络结构数据中心网络传输模式。
2、网络收敛:三层网络结构中,同一个物理网络中的储存网络和通信网络,主机和阵列之间的数据传输通过储存网络来传输,在逻辑拓扑上就像是直接连接的一样
3、虚拟化:将物理客户端向虚拟客户端转化,虚拟化服务器是未来发展的主流和趋势,它使得三层网络结构的网络节点的移动变得非常简单。
4、如果三层网络结构上主机需要通过高速带宽相互访问,但通过层层的uplink口,会导致潜在的、而且非常明显的性能衰减。三层网络结构的原始设计更会加剧这种性能衰减,由于生成树协议会防止冗余链路存在环路,双上行链路接入交换机只能使用一个指定的网络接口链接。
5、横向网络(east-west)在纵向设计的三层网络结构中传输数据会带有传输的瓶颈,因为数据经过了许多不必要的节点(如路由和交换机等设备)。
参考资料来源:百度百科-三层网络结构
谁知道5G时代哪种编程会火起来?
5G 是第五代通信技术,是 4G 之后的延伸,是对现有的无线通信技术的演进。 其最大的变化在于 5G 技术是一套技术标准,其服务的对象从过去的人与人通信,增加了人与物、物与物的通信。根据历史经验,我国移动通信的每十年会推出下一代网络协议。随着用户需求的持续增长,未来 10 年移动通信网络将会面对: 1000 倍的数据容量增长, 10 至 100倍的无线设备连接,10 到 100 倍的用户速率需求, 10 倍长的电池续航时间需求等等, 4G 网络无法满足这些需求,所以 5G 技术应运而生。需求增加的最主要驱动力有两个:移动互联网和物联网。根据 ITU 给出的***, 5G 技术有望在2020 年开始商用。
面对 5G 在传输速率和系统容量等方面的性能挑战,天线数量需要进一步增加, 利用空分多址(SDMA)技术,可以在同一时频***上服务多个用户,进一步提高频谱效率。硬件上,大规模天线阵列由多个天线子阵列组成,子阵列的每根天线单独拥有移相器、功率放大器、低噪放大器等模块。软件层面则需要复杂的算法来管理和动态地适应与编码和解码用于多个并行信道的数据流,通常被实现为一个 FPGA。 大规模天线阵列将带来天线的升级及数量需
求,同时射频模块(移相器、功率放大器、低噪放大器等)的需求将爆发,此外数据的增加将利好功能更加强大的综合处理模块如 FPGA等等。
可以说5G的出现,将会推动半导体产业和终端往一个新的方向发展,创造一波新的价值,我们不妨来详细了解一下。
什么是5G?
5G 是第五代通信技术,是 4G 之后的延伸, 是对现有的无线通信技术的演进。 其最大的变化在于 5G 技术是一套技术标准,其服务的对象从过去的人与人通信,增加了人与物、物与物的通信。
回顾移动通信的发展历程,每一代移动通信系统都可以通过标志性能力指标和核心关键技术来定义,其中, 1G ***用频分多址( FDMA),只能提供模拟语音业务; 2G 主要***用时分多址( TDMA),可提供数字语音和低速数据业务;3G 以码分多址( CDMA)为技术特征,用户峰值速率达到 2Mbps 至数十 Mbps, 可以支持多媒体数据业务; 4G 以正交频分多址( OFDMA)技术为核心,用户峰值速率可达 100Mbps 至 1Gbps,能够支持各种移动宽带数据业务。
移动通信标准的发展历程
5G 更强调用户体验速率,将达到 Gbps 量级。 5G 关键能力比以前几代移动通信更加丰富,用户体验速率、连接数密度、端到端时延、峰值速率和移动性等都将成为 5G 的关键性能指标。
然而,与以往只强调峰值速率的情况不同,业界普遍认为用户体验速率是 5G 最重要的性能指标,它真正体现了用户可获得的真实数据速率,也是与用户感受最密切的性能指标。基于 5G 主要场景的技术需求, 5G 用户体验速率应达到 Gbps 量级。
面对多样化场景的极端差异化性能需求, 5G 很难像以往一样以某种单一技术为基础形成针对所有场景的解决方案。
此外,当前无线技术创新也呈现多元化发展趋势,除了新型多址技术之外,大规模天线阵列、超密集组网、全频谱接入、新型网络架构等也被认为是 5G 主要技术方向,均能够在 5G 主要技术场景中发挥关键作用。
综合 5G 关键能力与核心技术, 5G 概念可由“ 标志性能力指标”和“一组关键技术”来共同定义。 其中,标志性能力指标为“ Gbps 用户体验速率”,一组关键技术包括大规模天线阵列、超密集组网、新型多址、全频谱接入和新型网络架构。
5G推进组定义的5G概念
目前 5G 技术已经确定了8 大关键能力指标:峰值速率达到 20Gbps、用户体验数据率达到 100Mbps、频谱效率比IMT-A 提升 3 倍、移动性达 500 公里/时、时延达到 1 毫秒、连接密度每平方公里达到 10Tbps、能效比 IMT-A 提升 100 倍、流量密度每平方米达到 10Mbps。
ITU定义的5G关键能力
中国5G之花概念
我国提出的 5G 之花概念形象的描述了 5G 的关键指标,其提出的 9 项关键能力指标中除成本效率一项外,其他 8项均与 ITU 的官方指标相匹配。
5G 的关键性能挑战及实现
从具体网络功能要求上来说, IMT-2020(5G)推进组定义了 5G 的四个主要的应用场景:连续广覆盖、热点高容量、低功耗大连接和低时延高可靠,而这些功能的实现都给供应商带来了很大的挑战。
5G主要场景与关键性能挑战
5G 技术创新主要来源于无线技术和网络技术两方面。其需求来自于以上的关键性能挑战。我们可以将关键性能分为以下三个部分:
5G关键性能分类
为了实现更高网络容量, 无线传输增加传输速率大体上有两种方法,其一是增加频谱利用率,其二是增加频谱带宽。
提高频谱利用率的主要的技术方式有增加基站和天线的数量,对应 5G 中的关键技术为大规模天线阵列( Massive MIMO)和超密集组网( UDN);而提高频谱带宽则需要拓展 5G 使用频谱的范围,由于目前 4G 主要集中在 2GHz以下的频谱,未来 5G 将使用26GHz,甚至 6-100GHz 的全频谱接入,来获取更大的频谱带宽。
而对于关键任务要求上,尤其是毫秒级的时延要求,对于网络架构提出了极大的挑战,5G 技术中将提出新型的多址技术以节省调度开销,同时基于软件定义网络( SDN)和网络功能虚拟化( NFV) 的新型网络架构将实现更加灵活的网络调度。
1、 大规模天线阵列( Massive MIMO) :提高频谱效率,未来需要更多的天线及射频模块在现有多天线基础上通过增加天线数可支持数十个独立的空间数据流,以此来增加并行传输用户数目,这将数倍提升多用户系统的频谱效率,对满足 5G 系统容量与速率需求起到重要的支撑作用。大规模天线阵列应用于 5G 需解决信道测量与反馈、参考信号设计、天线阵列设计、低成本实现等关键问题。
美国莱斯大学 Argos 大规模天线阵列原型机样图
大规模天线技术( MIMO)已经在 4G 系统中得以广泛应用。面对 5G 在传输速率和系统容量等方面的性能挑战,天线数目的进一步增加仍将是 MIMO 技术继续演进的重要方向。
根据概率统计学原理,当基站侧天线数远大于用户天线数时,基站到各个用户的信道将趋于正交,在这种情况下,用户间干扰将趋于消失。巨大的阵列增益将能够有效提升每个用户的信噪比,从而利用空分多址( SDMA)技术,可以在同一时频***上服务多个用户。
空分多址技术( SDMA)是大规模天线阵列技术应用的重要支撑,其基础技术原理来自于波束赋形( Beam forming) ,大规模天线阵列通过调整天线阵列中每个阵元的加权系数产生具有指向性的波束,从而带来明显的信号方向性增益,并与 SDMA 之间产生精密的联系。
空分多址提高频谱效率
大规模天线的优势可以归结为以下几点:
第一:提升网络容量。波束赋形的定向功能可极大提升频谱效率, 从而大幅度提高网络容量。
第二: 减少单位硬件成本。 波束赋形的信号叠加增益功能使得每根天线只需以小功率发射信号,从而避免使用昂贵的大动态范围功率放大器,减少了硬件成本。
第三: 低延时通信。 大数定律造就的平坦衰落信道使得低延时通信成为可能。传统通信系统为了对抗信道的深度衰落,需要使用信道编码和交织器,将由深度衰落引起的连续突发错误分散到各个不同的时间段上,而这种揉杂过程导致接收机需完整接受所有数据才能获得信息,造成时延。在大规模天线下,得益于大数定理而产生的衰落消失,信道变得良好,对抗深度衰弱的过程可以大大简化,因此时延也可以大幅降低。
第四:与毫米波技术形成互补。毫米波拥有丰富的带宽,但是衰减强烈,而波束赋形则正好可以解决这一问题。
波束赋形示例
大规模天线的研发和使用同样面临巨大的挑战,从研究层面而言,物理层研究会面临下表中的多个难点。而从实际部署层面而言,硬件成本是最主要的阻碍。首先随着发射天线数目的增多,天线阵列的占用面积将大幅增加,天线群及其对应的高性能处理器、转换器的成本也都远高于传统基站天线,使得大规模部署存在成本问题;其次实际的使用中,为了平衡成本和效果,可能会***用一些低成本硬件单元替代, 在木桶原理的作用下小幅降低成本可能会导致性能急剧下降,从而达不到预期效果。
大规模天线阵列物理层研究难点
相比于 SISO 或分集天线系统, 大规模多天线系统属于硬件、软件密集型的。大规模多天线系统由多个天线子阵列组成,每个子阵列共享数模转换、 混频器等元件, 而子阵列的每根天线单独拥有移相器、 功率放大器、低噪放大器等模块。 所以随着天线数的增加,硬件的部署成本会快速增加。
不过与此同时,多天线的增益效应使得系统的容错能力提升, 每个单元的模块(如数模转换、功率放大器等) 的功能可以进一步减弱。软件层面则需要复杂的算法来管理和动态地适应与编码和解码用于多个并行信道的数据流,这就需要一个相对强大的处理器,通常被实现为一个 FPGA。
利用混合波束赋形技术的天线系统架构图
整体而言, 未来 MIMO 将对天线带来升级需求,同时射频模块(移相器、功率放大器、低噪放大器等)的需求将爆发,此外数据的增加将利好功能更加强大的综合处理模块, 如 FPGA。
2、超密集组网( UDN) :解决热点网络容量问题,带来小基站千亿市场容量
未来移动数据业务飞速发展,热点地区的用户体验一直是当前网络架构中存在的问题。由于低频段频谱***稀缺,仅仅依靠提升频谱效率无法满足移动数据流量增长的需求。超密集组网通过增加基站部署密度,可实现频率复用效率的巨大提升,但考虑到频率干扰、站址***和部署成本,超密集组网可在局部热点区域实现百倍量级的容量提升,其主要应用场景将在办公室、住宅区、密集街区、校园、大型集会、体育场和地铁等热点地区。
超密集组网可以带来可观的容量增长,但是在实际部署中,站址的获取和成本是超密集小区需要解决的首要问题。而随着小区部署密度的增加,除了站址和成本的问题之外,超密集组网将面临许多新的技术挑战,如干扰、移动性、传输***等。对于超密集组网而言,小区虚拟化技术、接入和回传联合设计、干扰管理和抑制是三个最重要的关键技术。
超密集组网示例
由于超密集组网对基站和微基站的需求加大,以及在重点场景下基站选址将面临更大的挑战,未来将利好具备较好成本控制能力及基站选址能力的厂商。
基站性能及成本对比
2020 年全球小基站市场每年将超过 6 亿美金, 国内小基站市场容量最终有望达到千亿级别。 根据 Small CellForum预测,全球小基站市场空间有望在 2020 年超过 6亿美元。 截止至 2016 年半年报,中国移动, 中国联通,中国电信披露今年要达到的的 4G 基站数分别为 140 万个、68 万个、 85 万个。考虑联通中报披露了与电信共享的 6 万个基
站,***设年内共享基站达到 10 万个,则中国当前存量基站市场大约为 283 万个。***设未来小基站的数量能达到目前基站数量的 10 倍以上, 即未来小基站市场需求达到 2830 万个,***设小基站平均价格为 5000 元/个, 则未来小基站市场容量将达到千亿级别。
3、全频谱接入:扩大频谱宽度, 未来利好射频器件厂商,但频谱暂未分配
相对于提高频谱利用率,增加频谱带宽的方法显得更简单直接。在频谱利用率不变的情况下,可用带宽翻倍可实现数据传输速率也翻倍。通过有效利用各类移动通信频谱(包含高低频段、授权与非授权频谱、对称与非对称频谱、连续与非连续频谱等)***可以提升数据传输速率和系统容量。 但问题是,现在常用的6GHz以下的频段由于其较好的信道传播特性,目前已经非常拥挤, 6~100GHz高频段具有更加丰富的空闲频谱***,可作为5G的辅助频段,然而30GHz~100GHz频率之间属于毫米波的范畴,这就需要使用到毫米波技术。
频谱使用情况
到 2020 年我国 5G频谱缺口近 1GHz,低频段为首选,高频将成为补充。目前4G-LTE 频段最高频率的载波在 2GHz上下, 可用频谱带宽只有 100MHz。因此,如果使用毫米波频段,频谱带宽能达到 1GHz-10GHz,传输速率也可得到巨大提升。
我国 5G 推进组已完成2020 年我国移动通信频谱需求预测, 届时移动通信频谱需求总量为 1350~1810MHz, 我国已为 IMT 规划的 687MHz 频谱***均属于 5G 可用频谱***,因此还需要新增 663~1123MHz 频谱。 我国无线电管理“十三五”规划中明确为 IMT-2020( 5G)储备不低于500MHz 的频谱***。
在未来要支持毫米波通信,移动系统和基站必须配备更新更快的应用处理器、基带以及射频器件。
事实上, 5G 标准对射频影响较大,需要一系列新的射频芯片技术来支持,例如支持相控天线的毫米波技术。毫米波技术最早应用在航空军工领域,如今汽车雷达、 60GHz Wi-Fi 都已经***用,将来 5G 也必然会***用。 4G 手机里面的数字部分包括应用处理器和调制解调器,射频前端则包括功率放大器( PA)、射频信号源和模拟开关。功率放大器用于放大手机里的射频信号,通常***用砷化镓( GaAs)材料的异质结型晶体管( HBT)技术制造。
未来的 5G 手机也要有应用处理器和调制解调器。不过与 4G 系统不同, 5G 手机还需要相控阵天线。
此外,由于毫米波的频率非常高, 线路的阻抗对毫米波的影响很大,所以器件的布局和布线变得异常重要。 与 4G 手机一样, 5G 手机也需要功率放大器, 毫米波应用中,功率放大器将是系统功耗的决定性因素。
除此之外, 毫米波相比于传统 6GHz 以下频段还有一个特点就是天线的物理尺寸可以比较小。这是因为天线的物理尺寸正比于波段的波长,而毫米波波段的波长远小于传统 6GHz 以下频段,相应的天线尺寸也比较小。因此可以方便地在移动设备上配备毫米波的天线阵列,从而实现大规模天线技术。
4、新型多址技术:降低信令开销,缩短时延
通过发送信号在空/时/频/码域的叠加传输来实现多种场景下系统频谱效率和接入能力的显著提升。此外,新型多址技术可实现免调度传输,将显著降低信令开销,缩短接入时延,节省终端功耗。目前业界提出的技术方案主要包括基于多维调制和稀疏码扩频的稀疏码分多址( SCMA)技术,基于复数多元码及增强叠加编码的多用户共享接入( MUSA)技术,基于非正交特征图样的图样分割多址( PDMA)技术以及基于功率叠加的非正交多址( NOMA)技术。
此外,基于滤波的正交频分复用( F-OFDM)、滤波器组多载波( FBMC)、全双工、灵活双工、终端直通( D2D)、多元低密度奇偶检验( Q-ary LDPC)码、网络编码、极化码等也被认为是5G重要的潜在无线关键技术。
5、5G 网络关键技术: NFV 和 SDN,网络能力开放或利好第三方服务提供商
未来 5G 网络架构将包括接入云、控制云和转发云三个域: 接入云支持多种无线制式的接入,融合集中式和分布式两种无线接入网架构,适应各种类型的回传链路,实现更灵活的组网部署和更高效的无线***管理。
5G 的网络控制功能和数据转发功能将解耦,形成集中统一的控制云和灵活高效的转发云。控制云实现局部和全局的会话控制、移动性管理和服务质量保证,并构建面向业务的网络能力开放接口,从而满足业务的差异化需求并提升业务的部署效率。转发云基于通用的硬件平台,在控制云高效的网络控制和***调度下,实现海量业务数据流的高可靠、低时延、均负载的高效传输。
5G的网络架构图
基于“三朵云”的新型 5G 网络架构是移动网络未来的发展方向。未来的 5G 网络与 4G 相比,网络架构将向更加扁平化的方向发展,控制和转发将进一步分离,网络可以根据业务的需求灵活动态地进行组网,从而使网络的整体效率得到进一步提升。 5G 网络服务具备更贴近用户需求、定制化能力进一步提升、网络与业务深度融合以及服务更友好等特征,其中代表性的网络服务能力包括、网络切片、移动边缘计算、按需重构的移动网络、以用户为中心的无线接入网络和网络能力开放。
基于 NFV/SDN 技术实现网络切片以及网络能力开放
其中,网络能力开放将不仅带来用户的体验优化,还将带来新型的商业模式探索。5G 网络能力开放框架旨在实现面向第三方的网络友好化和网络管道智能化,优化网络***配置和流量管理。 4G 网络***用“不同功能、各自开放”的架构,能力开放平台需要维护多种协议接口,网络结构复杂,部署难度大; 5G 网络控制功能逻辑集中并中心部署。
能力开放平台间统一接口,可实现第三方对网络功能如移动性、会话、 QoS 和计费等功能的统一调用。而这一切都需要虚拟化的基础设施平台支撑。实现 5G新型基础设施平台的基础是网络功能虚拟化( NFV)和软件定义网络 ( SDN)技术。
传统网络架构(左)SDN+NFV 下的网络架构(右)
SDN/NFV 技术融合将提升 5G 进一步组大网的能力: NFV 技术实现底层物理***虚拟化, SDN 技术实现虚拟机的逻辑连接,进而配置端到端业务链,实现灵活组网。
NFV 使网元功能与物理实体解耦,通过***用通用硬件取代专用硬件,可以方便快捷地把网元功能部署在网络中任意位置,同时通过对通用硬件***实现按需分配和动态延伸, 以达到最优的***利用率的目的。NFV 可以满足运营商在网络灵活性、 架设成本、 可扩展性和安全性方面的需求。
首先, NFV 的特性使其可以让网络和服务预配置更加灵活。而这又可以让运营商和服务供应商快速地调整服务规模以便应对客户的不同需求。这些服务在任何符合行业标准的服务器硬件上,通过软件应用来提供,而最重要的一点就是安全***。
与购买硬件设备不同,服务供应商可以轻松地***用与设备相关的功能,然后将其以服务器虚拟机的形式示例。
由于网络功能是在软件总部署的,所以可以将这些功能移动到网络的各个位置,而不需要安装新的设备。这意味着运营商和服务供应商不需要部署很多硬件设备,而可用虚拟机来部署廉价,高容量服务器基础设施。
最重要的是,虚拟化消除了网络功能和硬件之间的依赖性,运营商只需设一个地区代表就可以了,而不用专门搭建一个基础设施来提供支持。
随着众多厂商推出了商用级 SDN、 NFV 解决方案,新型网络架构正逐步落地,据SNS 预计,到 2020 年, SDN 和 NFV 将为服务提供商(包含有线和无线)节省 320 亿美元的资本支出。
SDN 技术实现控制功能和转发功能的分离。
其核心技术 OpenFlow 一方面将网络控制面板从数据面中分离出来,另一方面开放可编程接口,从而实现网络流量的灵活控制及网络功能的“软件定义”,有利于通过网络控制平台从全局视角来感知和调度网络***,实现网络连接的可编程化。
SDN 典型架构包含三层及两个接口:
控制层: 控制器集中管理网络中所有设备,虚拟整个网络为***池,根据用户不同的需求以及全局网络拓扑,灵活动态的分配***。 SDN 控制器具有网络的全局视图,负责管理整个网络:对下层,通过标准的协议与基础网络进行通信;对上层,通过开放接口向应用层提供对网络***的控制能力。
物理层: 物理层是硬件设备层,专注于单纯的数据、业务物理转发,关注的是与控制层的安全通信,其处理性能一定要高,以实现高速数据转发。
应用层: 应用层通过控制层提供的编程接口对底层设备进行编程,把网络的控制权开放给用户,基于上开发各种业务应用,实现丰富多彩的业务创新。
南向接口:是物理设备与控制器信号传输的通道,相关的设备状态、数据流表项和控制指令都需要经由 SDN的南向接口传达,实现对设备管控。
北向接口: 是通过控制器向上层业务应用开放的接口,目的是使得业务应用能够便利地调用底层的网络***和能力,其直接为业务应用服务的,其设计需要密切联系业务应用需求,具有多样化的特征。
SDN的三层架构
5G背后的半导体商机
新一代移动通讯5G也助力半导体产业从PC、智慧型手机、平板装置出货量下滑的窘境中脱困。为顺利抢占物联网与5G移动通讯商机,半导体相关厂商包括晶圆制造/代工、封装与EDA业者,都纷纷展现其最新技术,如IBM领先推出7奈米芯片;台积电也宣示透过最新鳍式场效电晶体(FinFET)与物联网大资料分析技术,期可在物联网市场扮演重要角色。
不仅如此,在台湾及中国大陆通讯与手机处理器芯片市场占有一席之地的联发科(MediaTek),也针对即将到来的5G市场,以及发展越发火热的物联网应用市场,端出新策略。
资策会产业情报研究所(MIC)产业顾问兼主任张奇表示,2016年的台湾市场景气将较2015年来得好,对半导体产业来说是正面消息。MIC预测的2016年10大趋势中,所提出的「5G加速风」,即是阐述2016年5G的技术发展,将较2015年来的积极,且可为半导体产业带来更多机会。
i***g是哪些网元合集
热门频道
首页
博客
研修院
VIP
APP
问答
下载
社区
推荐频道
活动
招聘
专题
打开CSDN APP
Copyright © 1999-2020, CSDN.NET, All Rights Reserved
打开APP
移动数据网络类型是nr_NR 各网元功能介绍
2020-11-21 07:11:11
weixin_3***59881
码龄5年
关注
NR中可以将主要网元分为gNB、AMF和UPF三种,架构如下:
b6368c6c0fff05dd0be704830bbca87d.png
gNB具有以下功能:
无线***管理功能:无线承载控制、无线接入控制、连接移动性控制、上下行***动态分配(调度);
用户数据流的IP报头压缩和加密;
当不能根据UE提供的信息确定到AMF的路由时,在UE附着处选择AMF;
用户平面数据向UPF的路由;
调度和传输寻呼消息(源自AMF);
调度和传输系统广播信息(来自AMF或OM);
用于移动性和调度的测量和测量报告配置。
gNB的功能主要通过层3消息和UE进行交换,所以很有必要学习下RRC层的功能。
RRC协议包括以下主要功能:
系统信息广播:
包括NAS通用信息;
适用于RRC_IDLE和RRC_INACTIVE中的UE的信息(例如:小区重选或选择参数、相邻小区信息)和适用于RRC_Connected中的UE的信息(例如公共信道配置信息);
包括ETWS通知、CMAS通知;
包括定位辅助数据。
RRC连接控制:
寻呼;
建立/修改/暂停/恢复/解除RRC连接,包括UE标识(C-RNTI、fullI-RNTI等)的分配/修改、SRB的建立/修改/暂停/恢复/解除(SRB0除外);
进入限制;
初始AS安全激活,即AS完整性保护(SRB、DRB)和AS加密(SRB、DRB)的初始配置;
RRC连接移动性包括例如频内和频间切换,与安全处理相关联,即密钥/算法更改,网络节点之间传输的RRC上下文信息的规范;
建立/修改/暂停/恢复/发布携带用户数据的RB;
无线电配置控制,包括分配/修改ARQ配置、HARQ配置、DRX配置;
在DC情况下,小区管理包括:PSCELL改变、增加/修改/释放SCG小区;
在CA的情况下,小区管理包括SCell的添加/修改/释放;
QoS控制包括分别为DL和UL分配/修改半持久性调度(SPS)配置和配置的授权配置、UE中用于UL速率控制的参数的分配/修改,即为每个RB分配优先级和优先级比特率(PBR)。
从无线电链路故障(RLF)中恢复。
异系统之间的移动性,包括安全激活、RRC上下文信息的传输;
测量配置和报告:
建立/修改/发布测量配置(例如频内、频间和异系统间测量);
设置和释放测量间隙;
测量报告。
其他功能包括通用协议错误处理、专用NAS信息传输、UE无线接入能力信息传输。
AMF具有以下主要功能:
NAS信令终止端;
NAS信令安全;
接入层安全控制;
用于3GPP接入网之间移动性的CN间节点信令;
空闲模式UE可达性(包括寻呼重传的控制和执行);
跟踪区域列表管理(空闲和活动模式下的UE);
在AMF发生变化的情况下,选择AMF进行切换;
接入认证;
接入授权,包括检查漫游权限。
UPF具有以下主要功能:
系统内/间移动的锚点;
与数据网络互连的外部PDU会话点;
分组路由与转发;
分组检测和用户平面策略规则执行;
流量使用报告;
上行链路分类器,以支持路由业务流到数据网络;
支持多宿主PDU会话的分支点;
用户平面的QoS处理;
上行链路流量验证(SDF到QoS流映射);
上下行传输级分组标识;
下行包缓冲和下行数据通知触发。
会话管理功能(SMF)承载以下主要功能:
会话管理;
UEIP地址分配和管理;
用户面功能的选择和控制;
在UPF配置流量控制,将流量路由到适当的目的地;
控制策略执行和QoS部分;
下行数据通知。
主要功能总结如下图:
fbdc9e6bff70ff0144d91b4a9af85cdc.png
相关***:5GNR网络上下行速率优化思路..pdf_5g低速率优化-网络基础文档类...
打开CSDN APP,看更多技术内容
移动数据网络类型是nr_便携式移动网络的快速搭建方法_weixin_39832448的...
1.打开一个终端窗口,报告Yate(移动网络)状态 2.打开一个Firefox浏览器窗口,该窗口将被导航到YateBTS(基于web的移动网络配置)。此时,你就可以查看或修改网络配置的设置了,并管理或编写设备的SIM卡。 便携式移动网络的的搭建 要将兼容GSM...
继续访问
5G术语(一)-NR、NSA/SA_红苹果的脸的博客_nr sa
5G术语(一)-NR、NSA/SA 1、5GNR(New Radio,新空口),基于OFDM的全新空口设计的全球性5G标准,也是下一代非常重要的蜂窝移动技术基础,5G技术将实现超低时延、高可靠性。NR涉及一种基于正交频分复用(OFDM)的新无线标准。OFDM指的是...
继续访问
NR 5G 移动性和状态变化
基本说明 1、在NR中通过切换,在RRC释放时的重定向机制以及通过使用频率间和RAT间绝对优先级和频率间Qoffset参数来实现负载平衡。 2、UE针对连接模式移动性执行的测量被分类为至少三种测量类型: (1) 频率内NR测量; (2) 频率间NR测量; (3) E-UTRA的RAT间测量。 3、对于每种测量类型,可以定义一个或多个测量对象(测量对象定义例如要监视的载波频率)。 4、对于每个测量对...
继续访问
移动数据网络类型是nr_5G/NR 秒懂网络切片(协议专业版 二)
在5G的无线接入网中是支持切片之间的***隔离的,***隔离可针对不同客户实现专门的定制,可以通过RRM(Radio Resource Management, 无线***管理)策略和保护机制来实现,这些机制应避免一个切片***享***的短缺破坏了另一个切片的服务级别协议。为每个切片针对不同的服务级别协议进行分配共享或专用***,并通过操作维护管理为不同的切片配置一组不同的配置,使其***差异...
继续访问
5G/NR 5G核心网(5GC)之基本概念_5G加油站的博客_5g核心网基本...
5G/NR 5G核心网(5GC)之网络功能服务通信 第五代移动通信系统(5G)核心网架构打破了传统网络架构,其摒弃了专用硬件、专用通讯链路和路径、专用平台、点对点接口的传统网络架构模式,致力于一个高效化、软件化、开发化的系统网络架构。 3GPP...
继续访问
史上最完整的5G NR介绍_Upsame的博客_5g nr
这个EPS是为移动宽带而设计的。 从3G演进到4G,我称之为”整体演进“,即包括接入网和核心网的EPS整体演进到4G时代。 可到了5G我这儿就不一样了,那个3GPP组织把接入网(5G NR)和核心网(5G Core)拆开了,要各自独立演进到5G时代,这...
继续访问
最新发布 5G无线技术基础自学系列 | 协议栈
素材来源:《5G无线网络优化实践》接入网NG-RAN协议栈沿用4G网络的协议栈,分为三层两面。三层分别指物理层L1、数据链路层L2和网络层L3。两面是指控制面和用户面,并遵循控制面和用户面分离的原则。用户面的数据链路层在4G基础上增加了SDAP层,另外PDCP层、RLC层功能也有所变化。NG-RAN接口协议如图1-30所示。核心网5GC***用***A服务式架构,接入网和核心网之间的连接仍***用传统的模式,将应用协议承载在SCTP上进行传输(参阅3GPP TS38.300)。
继续访问
移动数据网络类型是nr_2G网也能有“第二春” 便携式移动网络的快速搭建方法...
在用户高峰时段,常用的移动网络很容易堵塞,不堪重负。所以,关键时刻能够建立安全可靠的通信,是非常重要的。在本案例中,我用的移动通信系统是GSM协议,为了能够将GSM协议广播出去,我使用了BladeRF。需要的设备1.树莓派,本文使用的是树莓派3;2.Micro SD卡,本文使用的是32 GB的;3.Nuand BladeRF,本文使用的是BladeRF x40;4.在树莓派上启用SSH,...
继续访问
基于sklearn的朴素贝叶斯_sklearn中的朴素贝叶斯模型及其应用(下附:补11.22号作业)...
1.使用朴素贝叶斯模型对iris数据集进行花分类尝试使用3种不同类型的朴素贝叶斯:高斯分布型from sklearn import datasetsiris = datasets.load_iris()from sklearn.naive_bayes import GaussianNBgnb = GaussianNB()#构造pred = gnb.fit(iris.data,iris.target...
继续访问
python_简单蛋白质功能二分类预测(sklearn:GNB)
文章目录python coderesult: python code from sklearn.neighbors import KNeighborsClassifier from sklearn.naive_bayes import GaussianNB import numpy as np def get_percents(protein): ''' according the protein to calculate the percentes: ''' aa20 = ('A'
继续访问
4.sklearn机器学习-------分类(监督学习)
1.监督学习利用一组带有标签的数据,学习从输入到输出的映射,然后将这种映射 关系应用到未知数据上,达到分类或回归的目的。 分类:当输出是离散的,学习任务为分类任务。 回归:当输出是连续的,学习任务为回归任务。2.分类学习输入:一组有标签的训练数据(也称观察和评估),标签表明了这些数 据(观察)的所署类别。输出:...
继续访问
监督学习
1 监督学习 利用一组带标签的数据, 学习从输入到输出的映射, 然后将这种映射关系应用到未知数据, 达到分类或者回归的目的 (1) 分类: 当输出是离散的, 学习任务为分类任务 输入: 一组有标签的训练数据(也叫观察和评估), 标签表明了这些数据(观察)的所属类别, 图中"猫"和"狗"就是标签 输出: 分类模型根据这些训练数据, 训练自己的模型参数, 学...
继续访问
贝叶斯分类器原理和应用
利用 sklearn 贝叶斯分类器对 IRIS 数据集分类 贝叶斯分类的基本思想一言以蔽之“将样本归为其后验概率最大的那个类”。 具体原理参考: sklearn 工具包中对根据样本的分布特性对朴素贝叶斯分类器进行了实现,分为以下几个具体情...
继续访问
编程实现朴素贝叶斯分类算法
from sklearn.datasets import load_iris iris=load_iris() from sklearn.naive_bayes import GaussianNB #高斯分布型 gnb=GaussianNB() #构造 pred=gnb.fit(iris.data,iris.target) #拟合 y_pred=pred.predict...
继续访问
移动数据网络类型是nr_5G-NR基站的类型定义和要求
本文版权归“5G通信”和5G哥所有,未经授权,请勿转载5G基站类别在5G-NR中,除非另有说明,否则本文中的要求适用于广域基站,中等范围基站和局域基站。对于具有和不具有连接器的BS,每个类的关联部署方案完全相同。5G-NR中,关于基站类别,分为:BS类型1-C,BS类型1-H,BS类型1-O和BS类型2-OBS类型1-CBS类型1-C要求应用于BS天线连接器(端口A),用于单个发送器或接收器,带有...
继续访问
5G控制面协议之N2接口
N2接口协议概述 N2接口是gNB和AMF的接口,协议是NGAP,N2的传输层是SCTP,上层用户是5G-NAS(MM移动性管理、SM会话管理等)。 根据官方对N2接口能力的描述,N2接口需具备以下能力: 1、支持建立、保持和释放PDU会话的NG-®AN侧(***、UE上下文)的能力; 2、支持intra-RAT和inter-RAT(5G内、5G和4G之间)的切换; 3、透传UE和AMF之间的NAS信令; 4、用户数据报文的***预留机制; 5、能在协议栈上区分出不同用户,并完成UE相关的信令管理。 图1
继续访问
移动数据网络类型是nr_NR测量***
无线通信系统的移动性管理,均是通过UE上报的测量报告,基站来判断是否满足切换条件,而测量报告一般可以根据覆盖(RSRP)、质量(RSRQ、SINR)来进行上报,上报的形式有周期性和基于***触发,周期性主要是上报最强的覆盖校区,也就是网络***集覆盖情况,***触发一般是切换(也可能是重定向等)。理想情况下,基站应允许UE报告服务小区和相邻小区的信号质量,并通过单次测量触发切换,但在实际应用中,由于不必要...
继续访问
移动数据网络类型是nr_5G(NR)网络中小区接入控制
无线接入控制是一种针对话务拥塞的处理机制。通过限制移动设备向基站的连接请求,保护和保证紧急呼叫等关键通信的成功接入。无线侧可控制接入的方法有两种:1.(终端侧)接入控制方式 在向基站移动设备发送任何连接请求之前(终端)需读取广播消息、(基站)识别呼叫类型,并判断(基站)是否禁止呼叫的连接请求。2.(基站侧)无线(RRC)连接拒绝 基站识别移动终端发送的连接请求类...
继续访问
NR 5G L2数据链路层
概述 NR的层2被分成以下子层: 媒体接入控制(MAC),无线链路控制(RLC),分组数据汇聚协议(PDCP)和服务数据适配协议(SDAP)。 物理层提供MAC子层传输信道; MAC子层向RLC子层提供逻辑信道; RLC子层提供给PDCP子层RLC信道; PDCP子层向SDAP子层提供无线承载; SDAP子层提供5GC QoS流; Comp. refers 头部压缩和segm分割; 控制信道(为...
继续访问
NR接入网从标准到原理:第一篇·NR网络架构(一)
本文为本系列笔记的开篇,将结合3GPP协议从各方面记录NR接入网的相关基础知识。 第一章从网络架构说起。本篇为上篇,主要介绍整体介绍NR网络架构,包含了部分核心网内容,其NR网络的整体架构示意图如下图所示。下篇将聚焦接入网的网络结构,对其分层架构进行详尽的介绍。
继续访问
5G NR 网络类型移动开发小记
作者:钱唐 从何而来 来到2021年,5G从2019年商用那刻起,算是「元年」了3年。随着Android 10/11两个版本的迭代,iPhone12以及iOS14的出现,移动蜂窝网络的最大群体总算开始梦想照进现实,虽然5G本身针对「手机」用户现阶段带来的提升并不是3G-4G那样的肉眼可见,并且这一代的突破从现阶段看也不仅只是做给手机用户的,从2019年到今天,依然还是那一句“时延”“带宽”在寻找新的业务场景和赛道。 代码滚滚,App的开发码工们带着他们的历史包袱,迎接这新技术、新硬件的到..
继续访问
5G(NR)网络中的SRB定义和类型
SRB( Signaling Radio Bearer)就是无线信令承载;SRBs(Signalling Radio Bearers)是传输RRC和NAS消息的无线承载;根据3GPP TS38.331,5G (NR)的SRB有四种: 1.SRB的类型 ——SRB0用来传输RRC消息,在逻辑信道CCCH上传输 ——SRB1用来传输RRC消息(也许会包含piggybacked NAS消息),在SRB2承载的建立之前,比SRB2具有更高的优先级。在逻辑信道DCCH上传输. ——SRB2用来传输NAS消息...
继续访问
热门推荐 NR 5G 网络整体架构及功能总结
5G网络的整体架构 5G的网络架构主要包括5G接入网和5G核心网,其中NG-RAN代表5G 接入网,5GC代表5G核心网。 5G接入网(NG-RAN) 5G接入网主要包含一下两个节点: 1、gNB: 为5G网络用户提供NR的用户平面和控制平面协议和功能 2、ng-eNB:为4G网络用户提供NR的用户平面和控制平面协议和功能 其中gNB和gNB之间,gNB和ng-eNB之间,ng-eNB...
继续访问
移动数据网络类型是nr_5G基站类型及频点计算
5G定义了三类基站(Active Antenna System :AAS BS),AAS BS基站等级:广域基站(Wide Area Base Stations)的特点是从宏小区(Macro Cell)场景中导出的要求,其中BS到UE沿地面的最小距离等于35m。中程基站(Medium Range Base Stations)的特点是,要求源自微型小区(MicroCell)场景,基站到用户终端的最小...
继续访问
移动网络类型nr
移动数据网络类型是nr
写评论
评论
2
点赞
踩
分享
移动网络架构图的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于移动通信网络基本结构、移动网络架构图的信息别忘了在本站进行查找喔。