NR网络架构与关键技术(NR核心网)

网络设计 295
本篇文章给大家谈谈NR网络架构与关键技术,以及NR核心网对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。 本文目录一览: 1、5GNR漫谈1:NR物理层帧结构

本篇文章给大家谈谈NR网络架构与关键技术,以及NR核心网对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。

本文目录一览:

5GNR漫谈1:NR物理层帧结构

5GNR标准是3GPP组织在4G LTE标准后,为适应新的移动通信发展需要,制订的新标准,它主要考虑的是大数据量、低时延、万物互联的应用场景。虽然是新的标准协议,但NR标准仍然处处有着LTE标准的“影子”,传统上做为代差最明显的物理层核心调制解调技术,NR和LTE***用的都是OFDM技术,这明显区别于2G的G******用TDMA/FDMA技术,3G的WCDMA和TD-SDMA***用的是CDMA技术。这也是众多的业内人士认为5G不够“新”的原因,理论技术创新应用不如前几代通信技术在改朝换代时那么明显。虽然在信道编码方面***用了LDPC和Polar编码,但两种编码方式与3G/4G时代用的Turbo编码在吐吞性能上相比,并没有数量级上质的飞跃,3GPP组织内部讨论***用何种信道编码方式时,也做了激烈的争论,最后由于LDPC和Polar工程上实现起来运算量更少利于实现,而最终做了权衡,长码字用LDPC,短码字用Polar,当然这里面也涉及到了产业内各大玩家参与者的利益之争。

从3G时代的CDMA时代开始,到4G/5G时代,无线空口的1个无线帧长(radio frame)都是10ms,体现了其技术体系的一脉相承。不过,NR相对于LTE的子帧(sub frame)和时隙(slot)结构有了很大的区别,LTE子帧固定为1ms,包含2个时隙,子载波间隔(subcarrier space)固定为15KHz,而NR在这方面则灵活变化得多。这种灵活变化,主要是为了适应NR时代的各种应用场景。标准协议定义了一个参数Numerologies(u )来体现这种变化,由 u值的不同,决定了子载波间隔的不同,进而定义了每个无线帧包含的时隙个数、每个子帧包含的时隙个数、每个时隙包含的OFDM符号数的不同。这里边最关键的定义依据来源,在于OFDM子载波间隔的改变,带来OFDM在时间符号长度上的改变。相同的是,NR在***块(Resource Block,RB)的定义上仍然相同,频域占用12个子载波,时域占用一个时隙的长度。

理论上,OFDM时域符号长度(不包含保护间隔),由子载波间隔决定,为其倒数,由此可知,子载波间隔越大,OFDM时域符号长度就长小,这正有利于低时延场景的应用。

每个***块(RB)占用带宽

子载波间隔与符号时长关系

NR物理层上行信道定义有随机接入信道PRACH、上行控制信道PUCCH、上行共享信道PUSCH,下行信道定义有主同步信道PSS、辅同步信道SSS、广播信道PBCH、下行控制信道PDCCH、下行共享信道PDSCH,由此可见,上行信道类型大体和LTE相同,但下行信道少了LTE的控制格式指示信道PCFICH和混合自动重传指示信道PHICH。前面说道NR定义了一个参数集Numerologies,那么,是不是每个上下行信道都可以对应多种 值呢?答案是否定的。

每个物理信道承载的业务类型是有其自身特点的,不必要求每个信道支持所有的 u值参数,那样系统过于复杂,也不利于工程实现。比如,NR仅在子载波为60KHz(u =2)的时候,支持Normal和Extended两种CP类型,其它子载波间隔的时候仅支持Normal CP类型。那么,在设计S***(包含PSS、SSS、PBCH)信道的时候,就不支持子载波间隔为60KHz的场景,这是为了给终端在开机检测接收S***的时候带来简便,节省时间和实现***,因为如果S***支持60KHz的场景,则要检测S***的时候,就要从接收的空口基带数据中,找到无线帧起始,然后区分CP类型,从而再对接收数据进行相应的OFDM符号级提取数据处理,这无疑带来工程实现上的复杂繁琐

不同于LTE里面的TDD帧结构定义了7种上下行时隙配比无线帧模式,以及9种特殊子帧导频时隙DwPTS、UpPTS的时长,NR并没有预先定义严格的上下行配比以及特殊子帧配比,代之以灵活的广播通知模式,在广播消息里告知上下行结构模式,在一个上下行发射周期内(Tran***ission Periodicity),通过告知下行时隙个数(nrofDownlinkSlots),下行符号个数(nrofDownlinkSymbols),上行符号个数(nrofUplinkSymbols),上行时隙个数(nrofUplinkSlots)来确定上下行时间结构。通过这种手段,使得NR帧结构可以适应更为灵活的业务结构。

协议里面包含了6种上下行(UL/DL)周期( Periodicity,P)模式,系统可支持其中一种或者多种模式。

以eMBB(增强型无线宽带)场景,30KHz子载波间隔为例,这里例举实现中3种各厂家可能的帧结构。

第一种:

2.5ms双周期结构,在5ms里面有两个不同类型的周期,第一个2.5ms为DDDSU,第二个2.5ms为DDSUU,合在一起为:DDDSUDDSUU。这种类型有两个连续上行时隙,意味着能够接收更远的随机接入申请,有利于提升上行覆盖。

第二种:

2.5ms单周期结构,以2.5ms为周期,重复发射模板DDDSU。这种类型下行时隙多,有利于增大下行吞吐量。

第三种:

2ms单周期结构,以2ms为周期,重复发射DSDU。这种模式上下行转换较为均衡,有效减少网络时延。但上下行切换频繁,需要在上行时隙中牺牲一部分符号做切换。

由前所述,虽然灵活的上下行时隙配置,给灵活的实现各类场景的业务,带来技术实现上的便利,却也给传统的直放站(RP repeater)厂商带来了麻烦。直放站为了解决信号覆盖差的问题,在5G以前的时代,技术上可以实现搜索无线帧边界和确定上下行切换时间点后,对接收的无线帧信号进行中继放大。因为5G前时代的技术标准,上下行帧结构的切换模式较为固定,变化最多的LTE也不超过10种,这种上下行变化少的帧结构特点,给技术上工程实现信号的再生放大带来简单化。然而NR标准中上下行帧结构的不确定性,给实现信号的再生放大,带来了巨大挑战。当然,并非不可实现。

声明:部分图片来源于

i***g是哪些网元合集

热门频道

首页

博客

研修院

VIP

APP

问答

下载

社区

推荐频道

活动

招聘

专题

打开CSDN APP

Copyright © 1999-2020, CSDN.NET, All Rights Reserved

打开APP

移动数据网络类型是nr_NR 各网元功能介绍

2020-11-21 07:11:11

weixin_3***59881

码龄5年

关注

NR中可以将主要网元分为gNB、AMF和UPF三种,架构如下:

b6368c6c0fff05dd0be704830bbca87d.png

gNB具有以下功能:

无线***管理功能:无线承载控制、无线接入控制、连接移动性控制、上下行***动态分配(调度);

用户数据流的IP报头压缩和加密;

当不能根据UE提供的信息确定到AMF的路由时,在UE附着处选择AMF;

用户平面数据向UPF的路由;

调度和传输寻呼消息(源自AMF);

调度和传输系统广播信息(来自AMF或OM);

用于移动性和调度的测量和测量报告配置。

gNB的功能主要通过层3消息和UE进行交换,所以很有必要学习下RRC层的功能。

RRC协议包括以下主要功能:

系统信息广播:

包括NAS通用信息;

适用于RRC_IDLE和RRC_INACTIVE中的UE的信息(例如:小区重选或选择参数、相邻小区信息)和适用于RRC_Connected中的UE的信息(例如公共信道配置信息);

包括ETWS通知、CMAS通知;

包括定位辅助数据。

RRC连接控制:

寻呼;

建立/修改/暂停/恢复/解除RRC连接,包括UE标识(C-RNTI、fullI-RNTI等)的分配/修改、SRB的建立/修改/暂停/恢复/解除(SRB0除外);

进入限制;

初始AS安全激活,即AS完整性保护(SRB、DRB)和AS加密(SRB、DRB)的初始配置;

RRC连接移动性包括例如频内和频间切换,与安全处理相关联,即密钥/算法更改,网络节点之间传输的RRC上下文信息的规范;

建立/修改/暂停/恢复/发布携带用户数据的RB;

无线电配置控制,包括分配/修改ARQ配置、HARQ配置、DRX配置;

在DC情况下,小区管理包括:PSCELL改变、增加/修改/释放SCG小区;

在CA的情况下,小区管理包括SCell的添加/修改/释放;

QoS控制包括分别为DL和UL分配/修改半持久性调度(SPS)配置和配置的授权配置、UE中用于UL速率控制的参数的分配/修改,即为每个RB分配优先级和优先级比特率(PBR)。

从无线电链路故障(RLF)中恢复。

异系统之间的移动性,包括安全激活、RRC上下文信息的传输;

测量配置和报告:

建立/修改/发布测量配置(例如频内、频间和异系统间测量);

设置和释放测量间隙;

测量报告。

其他功能包括通用协议错误处理、专用NAS信息传输、UE无线接入能力信息传输。

AMF具有以下主要功能:

NAS信令终止端;

NAS信令安全;

接入层安全控制;

用于3GPP接入网之间移动性的CN间节点信令;

空闲模式UE可达性(包括寻呼重传的控制和执行);

跟踪区域列表管理(空闲和活动模式下的UE);

在AMF发生变化的情况下,选择AMF进行切换;

接入认证;

接入授权,包括检查漫游权限。

UPF具有以下主要功能:

系统内/间移动的锚点;

与数据网络互连的外部PDU会话点;

分组路由与转发;

分组检测和用户平面策略规则执行;

流量使用报告;

上行链路分类器,以支持路由业务流到数据网络;

支持多宿主PDU会话的分支点;

用户平面的QoS处理;

上行链路流量验证(SDF到QoS流映射);

上下行传输级分组标识;

下行包缓冲和下行数据通知触发。

会话管理功能(***F)承载以下主要功能:

会话管理;

UEIP地址分配和管理;

用户面功能的选择和控制;

在UPF配置流量控制,将流量路由到适当的目的地;

控制策略执行和QoS部分;

下行数据通知。

主要功能总结如下图:

fbdc9e6bff70ff0144d91b4a9af85cdc.png

相关***:5GNR网络上下行速率优化思路..pdf_5g低速率优化-网络基础文档类...

打开CSDN APP,看更多技术内容

移动数据网络类型是nr_便携式移动网络的快速搭建方法_weixin_39832448的...

1.打开一个终端窗口,报告Yate(移动网络)状态 2.打开一个Firefox浏览器窗口,该窗口将被导航到YateBTS(基于web的移动网络配置)。此时,你就可以查看或修改网络配置的设置了,并管理或编写设备的SIM卡。 便携式移动网络的的搭建 要将兼容G***...

继续访问

5G术语(一)-NR、NSA/SA_红苹果的脸的博客_nr sa

5G术语(一)-NR、NSA/SA 1、5GNR(New Radio,新空口),基于OFDM的全新空口设计的全球性5G标准,也是下一代非常重要的蜂窝移动技术基础,5G技术将实现超低时延、高可靠性。NR涉及一种基于正交频分复用(OFDM)的新无线标准。OFDM指的是...

继续访问

NR 5G 移动性和状态变化

基本说明 1、在NR中通过切换,在RRC释放时的重定向机制以及通过使用频率间和RAT间绝对优先级和频率间Qoffset参数来实现负载平衡。 2、UE针对连接模式移动性执行的测量被分类为至少三种测量类型: (1) 频率内NR测量; (2) 频率间NR测量; (3) E-UTRA的RAT间测量。 3、对于每种测量类型,可以定义一个或多个测量对象(测量对象定义例如要监视的载波频率)。 4、对于每个测量对...

继续访问

移动数据网络类型是nr_5G/NR 秒懂网络切片(协议专业版 二)

在5G的无线接入网中是支持切片之间的***隔离的,***隔离可针对不同客户实现专门的定制,可以通过RRM(Radio Resource Management, 无线***管理)策略和保护机制来实现,这些机制应避免一个切片***享***的短缺破坏了另一个切片的服务级别协议。为每个切片针对不同的服务级别协议进行分配共享或专用***,并通过操作维护管理为不同的切片配置一组不同的配置,使其***差异...

继续访问

5G/NR 5G核心网(5GC)之基本概念_5G加油站的博客_5g核心网基本...

5G/NR 5G核心网(5GC)之网络功能服务通信 第五代移动通信系统(5G)核心网架构打破了传统网络架构,其摒弃了专用硬件、专用通讯链路和路径、专用平台、点对点接口的传统网络架构模式,致力于一个高效化、软件化、开发化的系统网络架构。 3GPP...

继续访问

史上最完整的5G NR介绍_Upsame的博客_5g nr

这个EPS是为移动宽带而设计的。 从3G演进到4G,我称之为”整体演进“,即包括接入网和核心网的EPS整体演进到4G时代。 可到了5G我这儿就不一样了,那个3GPP组织把接入网(5G NR)和核心网(5G Core)拆开了,要各自独立演进到5G时代,这...

继续访问

最新发布 5G无线技术基础自学系列 | 协议栈

素材来源:《5G无线网络优化实践》接入网NG-RAN协议栈沿用4G网络的协议栈,分为三层两面。三层分别指物理层L1、数据链路层L2和网络层L3。两面是指控制面和用户面,并遵循控制面和用户面分离的原则。用户面的数据链路层在4G基础上增加了SDAP层,另外PDCP层、RLC层功能也有所变化。NG-RAN接口协议如图1-30所示。核心网5GC***用***A服务式架构,接入网和核心网之间的连接仍***用传统的模式,将应用协议承载在SCTP上进行传输(参阅3GPP TS38.300)。

继续访问

移动数据网络类型是nr_2G网也能有“第二春” 便携式移动网络的快速搭建方法...

在用户高峰时段,常用的移动网络很容易堵塞,不堪重负。所以,关键时刻能够建立安全可靠的通信,是非常重要的。在本案例中,我用的移动通信系统是G***协议,为了能够将G***协议广播出去,我使用了BladeRF。需要的设备1.树莓派,本文使用的是树莓派3;2.Micro SD卡,本文使用的是32 GB的;3.Nuand BladeRF,本文使用的是BladeRF x40;4.在树莓派上启用SSH,...

继续访问

基于sklearn的朴素贝叶斯_sklearn中的朴素贝叶斯模型及其应用(下附:补11.22号作业)...

1.使用朴素贝叶斯模型对iris数据集进行花分类尝试使用3种不同类型的朴素贝叶斯:高斯分布型from sklearn import datasetsiris = datasets.load_iris()from sklearn.naive_bayes import GaussianNBgnb = GaussianNB()#构造pred = gnb.fit(iris.data,iris.target...

继续访问

python_简单蛋白质功能二分类预测(sklearn:GNB)

文章目录python coderesult: python code from sklearn.neighbors import KNeighborsClassifier from sklearn.naive_bayes import GaussianNB import numpy as np def get_percents(protein): ''' according the protein to calculate the percentes: ''' aa20 = ('A'

继续访问

4.sklearn机器学习-------分类(监督学习)

1.监督学习利用一组带有标签的数据,学习从输入到输出的映射,然后将这种映射 关系应用到未知数据上,达到分类或回归的目的。 分类:当输出是离散的,学习任务为分类任务。 回归:当输出是连续的,学习任务为回归任务。2.分类学习输入:一组有标签的训练数据(也称观察和评估),标签表明了这些数 据(观察)的所署类别。输出:...

继续访问

监督学习

1 监督学习 利用一组带标签的数据, 学习从输入到输出的映射, 然后将这种映射关系应用到未知数据, 达到分类或者回归的目的 (1) 分类: 当输出是离散的, 学习任务为分类任务 输入: 一组有标签的训练数据(也叫观察和评估), 标签表明了这些数据(观察)的所属类别, 图中"猫"和"狗"就是标签 输出: 分类模型根据这些训练数据, 训练自己的模型参数, 学...

继续访问

贝叶斯分类器原理和应用

利用 sklearn 贝叶斯分类器对 IRIS 数据集分类 贝叶斯分类的基本思想一言以蔽之“将样本归为其后验概率最大的那个类”。 具体原理参考: sklearn 工具包中对根据样本的分布特性对朴素贝叶斯分类器进行了实现,分为以下几个具体情...

继续访问

编程实现朴素贝叶斯分类算法

from sklearn.datasets import load_iris iris=load_iris() from sklearn.naive_bayes import GaussianNB #高斯分布型 gnb=GaussianNB() #构造 pred=gnb.fit(iris.data,iris.target) #拟合 y_pred=pred.predict...

继续访问

移动数据网络类型是nr_5G-NR基站的类型定义和要求

本文版权归“5G通信”和5G哥所有,未经授权,请勿转载5G基站类别在5G-NR中,除非另有说明,否则本文中的要求适用于广域基站,中等范围基站和局域基站。对于具有和不具有连接器的BS,每个类的关联部署方案完全相同。5G-NR中,关于基站类别,分为:BS类型1-C,BS类型1-H,BS类型1-O和BS类型2-OBS类型1-CBS类型1-C要求应用于BS天线连接器(端口A),用于单个发送器或接收器,带有...

继续访问

5G控制面协议之N2接口

N2接口协议概述 N2接口是gNB和AMF的接口,协议是NGAP,N2的传输层是SCTP,上层用户是5G-NAS(MM移动性管理、***会话管理等)。 根据官方对N2接口能力的描述,N2接口需具备以下能力: 1、支持建立、保持和释放PDU会话的NG-®AN侧(***、UE上下文)的能力; 2、支持intra-RAT和inter-RAT(5G内、5G和4G之间)的切换; 3、透传UE和AMF之间的NAS信令; 4、用户数据报文的***预留机制; 5、能在协议栈上区分出不同用户,并完成UE相关的信令管理。 图1

继续访问

移动数据网络类型是nr_NR测量***

无线通信系统的移动性管理,均是通过UE上报的测量报告,基站来判断是否满足切换条件,而测量报告一般可以根据覆盖(RSRP)、质量(RSRQ、SINR)来进行上报,上报的形式有周期性和基于***触发,周期性主要是上报最强的覆盖校区,也就是网络***集覆盖情况,***触发一般是切换(也可能是重定向等)。理想情况下,基站应允许UE报告服务小区和相邻小区的信号质量,并通过单次测量触发切换,但在实际应用中,由于不必要...

继续访问

移动数据网络类型是nr_5G(NR)网络中小区接入控制

无线接入控制是一种针对话务拥塞的处理机制。通过限制移动设备向基站的连接请求,保护和保证紧急呼叫等关键通信的成功接入。无线侧可控制接入的方法有两种:1.(终端侧)接入控制方式 在向基站移动设备发送任何连接请求之前(终端)需读取广播消息、(基站)识别呼叫类型,并判断(基站)是否禁止呼叫的连接请求。2.(基站侧)无线(RRC)连接拒绝 基站识别移动终端发送的连接请求类...

继续访问

NR 5G L2数据链路层

概述 NR的层2被分成以下子层: 媒体接入控制(MAC),无线链路控制(RLC),分组数据汇聚协议(PDCP)和服务数据适配协议(SDAP)。 物理层提供MAC子层传输信道; MAC子层向RLC子层提供逻辑信道; RLC子层提供给PDCP子层RLC信道; PDCP子层向SDAP子层提供无线承载; SDAP子层提供5GC QoS流; Comp. refers 头部压缩和segm分割; 控制信道(为...

继续访问

NR接入网从标准到原理:第一篇·NR网络架构(一)

本文为本系列笔记的开篇,将结合3GPP协议从各方面记录NR接入网的相关基础知识。 第一章从网络架构说起。本篇为上篇,主要介绍整体介绍NR网络架构,包含了部分核心网内容,其NR网络的整体架构示意图如下图所示。下篇将聚焦接入网的网络结构,对其分层架构进行详尽的介绍。

继续访问

5G NR 网络类型移动开发小记

作者:钱唐 从何而来 来到2021年,5G从2019年商用那刻起,算是「元年」了3年。随着Android 10/11两个版本的迭代,iPhone12以及iOS14的出现,移动蜂窝网络的最大群体总算开始梦想照进现实,虽然5G本身针对「手机」用户现阶段带来的提升并不是3G-4G那样的肉眼可见,并且这一代的突破从现阶段看也不仅只是做给手机用户的,从2019年到今天,依然还是那一句“时延”“带宽”在寻找新的业务场景和赛道。 代码滚滚,App的开发码工们带着他们的历史包袱,迎接这新技术、新硬件的到..

继续访问

5G(NR)网络中的SRB定义和类型

SRB( Signaling Radio Bearer)就是无线信令承载;SRBs(Signalling Radio Bearers)是传输RRC和NAS消息的无线承载;根据3GPP TS38.331,5G (NR)的SRB有四种: 1.SRB的类型 ——SRB0用来传输RRC消息,在逻辑信道CCCH上传输 ——SRB1用来传输RRC消息(也许会包含piggybacked NAS消息),在SRB2承载的建立之前,比SRB2具有更高的优先级。在逻辑信道DCCH上传输. ——SRB2用来传输NAS消息...

继续访问

热门推荐 NR 5G 网络整体架构及功能总结

5G网络的整体架构 5G的网络架构主要包括5G接入网和5G核心网,其中NG-RAN代表5G 接入网,5GC代表5G核心网。 5G接入网(NG-RAN) 5G接入网主要包含一下两个节点:   1、gNB: 为5G网络用户提供NR的用户平面和控制平面协议和功能   2、ng-eNB:为4G网络用户提供NR的用户平面和控制平面协议和功能  其中gNB和gNB之间,gNB和ng-eNB之间,ng-eNB...

继续访问

移动数据网络类型是nr_5G基站类型及频点计算

5G定义了三类基站(Active Antenna System :AAS BS),AAS BS基站等级:广域基站(Wide Area Base Stations)的特点是从宏小区(Macro Cell)场景中导出的要求,其中BS到UE沿地面的最小距离等于35m。中程基站(Medium Range Base Stations)的特点是,要求源自微型小区(MicroCell)场景,基站到用户终端的最小...

继续访问

移动网络类型nr

移动数据网络类型是nr

写评论

评论

2

点赞

分享

网络类型NR是什么意思

演示机型:华为MateBookX系统版本:win10网络类型NR是NewRadio,新空口,主要应用于5G领域,称作5GNR。5GNR基于OFDM的全新空口设计的全球性5G标准,也是下一代非常重要的蜂窝移动技术基础,5G技术将实现超低时延、高可靠性。随着3GPP***用这一标准之后,NR这一术语被沿用下来,成为5G的另一个代称,正如用LTE(长期演进)描述4G无线标准一样。

关于NR网络架构与关键技术和NR核心网的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

扫码二维码