新型网络架构技术抗毁重组(新型网络架构技术抗毁重组原则)
今天给各位分享新型网络架构技术抗毁重组的知识,其中也会对新型网络架构技术抗毁重组原则进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
本文目录一览:
提升5g链路可靠性的关键技术有哪些
提升5g链路可靠性的关键技术有五个,具体如下:
1、同时同频全双工技术
所谓的同时同频全双工技术,简单一点来说,就是指将以往通信双工节点中存在的干扰屏蔽,然后在利用信号机发射信号的同时接受信号,通过同时的操作来提高频谱效率。此技术和传统技术相比较更加的先进,而且工作效率也更高。
2、密集网络技术
此技术包含以下两方面内容:1、在宏基站的外部设置很多的天线,这样就可以进一步的拓宽室外空间。2、需要在室外布置很多的密集网络,这些密集网络所能产生的信噪比增益将会更加的客观。
3、多天线传输技术
所谓的多天线传输技术,就是指在使用有源天线来进行列阵,然后与毫米波联系起来,之后就可以有效提高天线的覆盖面积以及性能。
4、新型网络架构技术
新型网络架构技术就是未来可能产生的业务需要所出现的技术。此技术在应用中具有低时延以及低成本等多项优点。
5、智能化技术
在5G移动通信网络中,云计算是其中不可缺少的网络之一。这些数据进行及时的处理。而且因为基站的规模比较大,数量十分可观,所以在能够开展将频段进行划分,然后开展不同的业务。
6G或将于2030年实现商用
6G或将于2030年实现商用
6G或将于2030年实现商用,未来6G将拓展通信空间,实现地面与卫星通信集成、空天地海一体化,通信指标相比5G将有10-100倍提升,6G或将于2030年实现商用。
6G或将于2030年实现商用1
3月22日至24日,以移动通信行业为代表的产学研界举办了第二届“全球6G技术大会”,成为全球6G发展的重要论坛。
中国工程院院士吴江兴指出,作为2030年后智能网络基础设施的重要支撑技术,追求覆盖、带宽、时延等单一技术指标跨越的传统路径已不适用。
6G必须探索和开拓多目标可持续协调发展的新范式,如技术性能、成本投资、能源消耗、安全性、可靠性和可持续效率。
据报道,6G正在按照既定的步伐从需求向标准迈进。业内普遍预测,6G将在2030年左右上市。
对于6G,东南大学信息科学与工程学院教授洪伟认为,最具革命性的进展将是LEO卫星网络和地面5g后网络的集成。
人类将首次实现无线通信网络在整个地球表面、近地空间乃至部分外层空间的全覆盖,真正实现无处不在的信息互联。
中兴首席科学家项继英也表示,卫星通信是地面网络的重要补充。它在稀疏场景中具有成本效益优势,并提供通用服务,但不能取代地面网络。
在人口稠密地区,其产能远远达不到要求。未来,我们希望天基网络和地面网络的关键技术能够在一个大的技术体系中得到整合和协调。
根据之前的相关预测,6G的网络速度可以达到1000gbps,延迟小于100US(即0.1ms),速度是5g网络的50倍,延迟仅为后者的十分之一。它在峰值速率、延迟、流量密度、连接密度、移动性、频谱效率和定位能力等方面远优于5g。
6G或将于2030年实现商用2
随着5G网络建设加快推进,相关应用开始遍地开花,深入到千行百业。按照移动通信产业“使用一代,建设一代,研发一代”的发展节奏,全球业界已开启对下一代移动通信(6G)的探索研究。
“中国有望在2030年左右实现6G商用。”3月22日,第二届全球6G技术大会正式召开,中国工程院院士、北京邮电大学教授张平在6G愿景与技术需求论坛上预测说。
6G在路上
4G改变生活,5G改变社会,6G改变世界。
“6G将走向人机物灵充分联结、虚实结合、智慧涌现的泛在至简网络。”张平指出,其中的“灵”是指灵境网,即中国版元宇宙。6G和至简无线网络将有力支持数字孪生,数字孪生也将进一步为至简网络演进提供持续的自主内生优化。
张平解释说,4G前移动通信追求的是通信速率,而5G对通信和可靠性、时延方面提出了要求,未来6G将拓展通信空间,实现地面与卫星通信集成、空天地海一体化,通信指标相比5G将有10-100倍提升,将实现厘米级的高精度定位,走向人机物灵充分联合、虚拟结合、智慧涌现的泛在智简网络。
在场景上,张平认为,6G将实现数字孪生、智慧泛在,未来的应用场景包括全息交互、虚拟旅行,沉浸式社交等,而对于6G潜在关键技术,一方面是传统技术增强,如太赫兹、可见光等;另一方面是创新技术,如量子通信、AI赋能等。
张平介绍,目前,世界主要国家和地区均已启动6G研究,通过加大资金投入布局科研项目等措施,加速6G创新技术研发。
欧盟提出相对清晰的规划路线图,在2020年三季度完成了6G产学研框架项目;芬兰发布了6G***《面向6G泛在无线智能的驱动与主要研究挑战》,对于6G愿景和技术应用进行了系统性展望;韩国***提出“引领6G商业化”目标,***2028年实现全球第一个6G商业用;
日本发布B5G推进战略目标2025年完成6G基础技术研究,2030年商用;美国也从2018年开始6G研究,前期研究包括对6G芯片的研究,并在空天海地一体化通信特别是卫星互联网通信开展研究实践。
“中国高度重视6G发展,在‘十四五’规划中明确提出,要‘前瞻布局6G网络技术储备’,先后成立国家6G技术研发推进工作组和总体专家组、IMT2030(6G)推进组,扎实推进6G各项工作,取得了积极进展。”张平说。
6G改变世界
面向2030年及未来,6G网络将助力实现真实物理世界与虚拟数字世界的深度融合,构建万物智联、数字孪生的全新世界。
“6G‘数字孪生、智慧泛在’,是大家的美好愿景。”中国移动通信研究院绿色通信研究中心主任崔春风认为,6G的典型用例包括全息交互、数字孪生人、通感互联、智能交通、智慧生产以及元宇宙等,这些应用对6G网络提出更高要求:一是极致的能力,二是软件定义的分布式网络,三是全域覆盖,四是智慧泛在,五是内生安全。
“对运营商而言,我们希望实现数字孪生运营、零触碰、自动化运维的网络,在提升效率的同时降低成本,并且能够‘自生自灭自演进’。” 崔春风说。
中兴通讯无线研究院射频系统高级工程师彭琳同样认为,6G时代将诞生新的服务模式,比如沉浸式的云XR的体验、全息通讯、数字孪生新业态等,将进一步扩展到AI的互联网,感知互联网,迈入万物智联的6G时代。
“6G的愿景和能力需求,驱动着行业进一步开发空口***。比如,挖掘新的频谱***,以及向更高的毫米波以及太赫兹的频段迈进。”彭琳说。
在华为无线技术实验室技术专家王俊看来,6G将进一步发展超越通信的能力,在5G三大应用场景基础上,扩展人工智能和通信感知两大应用场景。
6G如何融合物理世界与数字世界?王俊指出,从物理世界到数字世界是典型的下行通道,将深度学习、机器学习和大数据分析等AI能力,通过AR/VR等沉浸式体验传递给用户;从物理世界到数字世界是典型的上升通道,主要应用全场景感知和面向机器学习的大数据***集,增强数字世界中大模型的完善程度和能力。
“在此过程中,6G将融合连接、感知和AI能力,成为关键的桥梁。”王俊说。
探索技术路径
目前,IMT-2030(6G)愿景研究已经形成的共识,包括:沉浸式云XR、全息通信,感官互联、智慧交互、通信感知、数字孪生、普惠智能、全域覆盖等新型应用。
为满足未来6G更加丰富的业务应用以及极致的性能需求,需要在探索新型网络架构的基础上,在关键核心技术领域实现突破。当前,全球业界对6G关键技术仍在探索中,并提出了一些潜在的关键技术方向以及新型网络技术。
东南大学教授许威认为,未来的6G技术发展趋势,是在更多的频段、更宽的带宽以及更深的维度进行更广泛的覆盖,最终实现速率更快、传输更稳定,以及更双碳化、更智能化的智能网络的融合体。
“中国电信认为,内生外拓,绿色泛在是6G网络的总体愿景,并以此打造和谐发展的新引擎。”中国电信研究院移动通信研究所所长王庆扬表示,将来的IMT2030是内生智能与安全、外拓感知与体验,构建人、机、物智慧互联的.新型系统,是人类社会和自然环境和谐发展的引擎。
“6G技术的创新发展,也因此应该以绿色节能为基本原则,提升系统的能量效率,实施生态运营;与此同时,还要考虑6G技术如何赋能千行百业,助力各行业深化数字化转型,实现绿色低碳发展。”王庆扬说。
中国科学院院士、上海交通大学教授毛军发指出,6G要在3个维度对5G实现质的提升,即更多连接、更广覆盖、更大带宽,前两者可以通过补充基站数量等方式实现连接与覆盖不足的缺陷,然而面向6G的大带宽需求,唯有毫米波太赫兹技术才能实现目标。
与会专家在6G毫米波与太赫兹技术论坛上也表示,尽管现阶段6G毫米波太赫兹技术的发展面临诸多技术挑战,但随着相关技术的不断突破和高频器件产业的持续发展,毫米波和太赫兹将凭借其丰富的频率带宽***等天然优势,与其他低频段网络融合组网,广泛应用于多维度多尺度通信场景,做为未来6G通信的重要支撑技术。
“6G网络必须成为智能的、分布式的、可伸缩的程序平台,使其能够满足不断增加的应用需求。”英特尔实验室、IEEE Fellow Rath Vannithamby指出,5G和AI正在改变无线网络,推动着无线的分布式智能发展,6G网络需要将通信、技术、AI实现无缝集成,来实现统一体验质量(QoE)。“目前,关于智能网络分布式集成技术的研究需要交叉学科的学术研究,进行协同设计。”
6G或将于2030年实现商用3
踩着“使用一代,建设一代,研发一代”的发展节奏,以移动通信产业为代表的产学研各界,已从初期对6G天马行空式的畅想、讨论和研究中,渐渐梳理出更为清晰、有针对性的推进思路。
3月22日-3月24日召开的第二届“全球6G技术大会”,将成为全球6G发展重要论道场。
中国工程院院士邬江兴指出,作为面向2030年之后的智能网联基础设施重要支撑技术,传统的追求覆盖、带宽、延迟等单项技术指标跃升的道路已不适合,6G必须探索和开辟技术性能、成本投入、能源消耗、安全可靠、持续高效等多目标可持续协同发展的新范式。
6G将走向人机物灵联结的智简网络
在昨日举行的全球6G技术大会“6G愿景与技术需求”圆桌论坛上,中国工程院院士、北京邮电大学教授张平发表演讲。
张平表示,从1G-4G,主要是人与人间的通信,是通信速率的线性提升;5G是面的提升,实现人与人、人与机器、机器与机器间的通信;6G 将拓展通信空间,使地面与卫星通信集成,实现“海陆空”一体化。
“4G改变生活,5G改变社会,6G改变世界。”张平表示,6G的通信指标相比5G将有10-100倍提升,也将实现厘米级的高精度定位。
6G将实现数字孪生、智慧泛在,未来的应用场景包括:全息交互、虚拟旅行、沉浸式社交等。
对于6G潜在的关键技术上,张平认为,一方面是传统技术增强,比如太赫兹、可见光等;另一方面是创新技术,比如量子通信、AI赋能等。
“6G将走向人机物灵联结的智简网络。”张平最后总结说,人机物灵中的灵是指灵境网,也就是中国版元宇宙。
当卫星网络加入成为普遍期待
6G从需求到标准,正在按照既定的步伐前行。业界普遍预测,6G将在2030年左右商用。
中国电信首席专家毕奇说:“愿望是好的,接下来怎么将真正有商业价值的愿景甄别出来,加快相关关键技术的研发,使其能在6G期间付诸实际部署,是未来几年科研的重要任务。”
对于6G,东南大学信息科学与工程学院教授洪伟的看法是,最革命性的进步将是中低轨卫星网络与地面后5G网络的融合。人类将第一次实现无线通信网络对整个地球表面和近地空间甚至部分外层空间的全覆盖,从而真正实现无处不在的信息互联。
对于6G广覆盖的期待,马斯克的低轨卫星“星链”起到了一定的***作用。
“目前马斯克的‘星链’是通过卫星锅接收和发射信号,目标用户群与移动通信大不相同。”毕奇指出,6G能否突破链路损耗及商业模式难题,把星链在6G期间连到手机而不需卫星锅型天线,以及有多少6G用户,愿意承担卫星服务的费用,目前挑战仍然很大。
中兴通讯首席科学家向际鹰亦表示:“卫星通讯是地面网络的重要补充,在稀疏场景下具有性价比优势,提供普遍服务,但它不能替代地面网络,在密集地区,其容量远远不能满足要求。未来,我们希望天基网络在关键技术上和地面网络在大的技术体系是融合协同的。”
6G竞争风起云涌
术研发工作启动会,正式启动6G研发工作。今年发布的《“十四五”数字经济发展规划》明确提出,前瞻布局第六代移动通信(6G)网络技术储备,加大6G技术研发支持力度,积极参与推动6G 国际标准化工作。
国际上,2020年2月,国际电信联盟召开第34次国际电信联盟工作组会议,正式启动6G的研究工作,明确了2023年底前国际电信联盟6G 早期研究的时间表。
美国的苹果、谷歌、微软等11家公司于2020年宣布成立6G联盟;欧盟已启动为期3年的6G 基础技术研究项目。
日本官民联盟准备在6月向国际会议提交6G国际标准草案。日本希望能够在6G网络技术发展争取更多主导权,并且在技术规范制定方面有更多话语权,以优势地位推进技术开发,共同为未来的6G无线通信提出技术要求。
此外,英国、芬兰和韩国也开展了6G技术的研发,期望在未来的全球6G技术标准竞争中取得有利地位。
工业和信息化部总工程师韩夏曾表示,未来6G业务将呈现出沉浸化、智慧化、全域化等新发展趋势,形成沉浸式云XR、全息通信、感官互联、智慧交互、通信感知、普惠智能、数字孪生、全域覆盖等业务应用,最终将助力人类社会实现“万物智联、数字孪生”的美好愿景。
SDN的主要技术特点
SDN的主要技术特点
SDN的应用场景与SDN技术本身的特点有很大的相关性,下面是我带来的SDN的主要技术特点。供大家参考。
SDN的主要技术特点体现在3方面:
● 转发与控制分离。SDN具有转发与控制分离的特点,***用SDN控制器实现网络拓扑的收集、路由的计算、流表的生成及下发、网络的管理与控制等功能;而网络层设备仅负责流量的转发及策略的执行。通过这种方式可使得网络系统的转发面和控制面独立发展,转发面向通用化、简单化发展,成本可逐步降低;控制面可向集中化、统一化发展,具有更强的性能和容量。
● 控制逻辑集中。转发与控制分离之后,使得控制面向集中化发展。控制面的集中化,使得SDN控制器拥有网络的全局静态拓扑,全网的动态转发表信息,全网络的***利用率,故障状态等。因此,SDN控制器可实现基于网络级别的统一管理、控制和优化,更可依托全局的拓扑的动态转发信息帮助实现快速的故障定位和排除,提高运营效率。
● 网络能力开放化。SDN还有一个重要特征是支持网络能力开放化。通过集中的SDN控制器实现网络***的统一管理、整合以及虚拟化后,***用规范化的北向接口为上层应用提供按需分配的网络***及服务,进而实现网络能力开放。这样的方式打破了现有网络对业务封闭的问题,是一种突破性的创新。
SDN控制与转发分离的特点,使得设备的硬件通用化、简单化,设备的硬件成本可大幅降低,可促进SDN的应用;但由于设备硬件的变化,转发流表的变化也存在SDN设备与现有网络设备的兼容问题,在一定时期内可能限制SDN在大规模网络中的应用。
SDN控制逻辑集中的特点,使得SDN控制器拥有网络全局拓扑和状态,可实施全局优化,提供网络端到端的部署、保障、检测等手段;同时,SDN控制器可集中控制不同层次的网络,实现网络的多层多域协同与优化,如:分组网络与光网络的联合调度。
SDN网络能力开放化的特点,使得网络可编程,易快捷提供的应用服务,网络不再仅仅是基础设施,更是一种服务,SDN的应用范围得到了进一步的拓展。
关于5G移动通信网络架构中SDN与NFV技术的应用论文
【摘要】
在当前的移动通信网络之中,关键在于突破软件定义网络(SDN)和网络功能虚拟化(NFV)的相关技术难题。在此之前,我们了解到如果在5G网络架构中运用SDN和NFV技术,将产生很大程度上的便利;再者,对国际上SDN与NFV技术最前沿的研究状况进行了阐述,对以SDN/NFV的网络架构为基础的设计理念进行了探究;最后,综合各种因素对在SDN/NFV技术之上的5G网络架构展开了试探性的探讨,并且对其中技术上的重难点进行了剖析,提出了相应的解决方案,希望能够为行业发展做出一定的贡献。
关键词
软件定义网络;网络功能虚拟化;5G网络架构
一些市场研究机构经过调研得出这样一个结论,第五代移动通信(以下简称为5G)网络大概会在2017年左右把相关协议确立下来,实现商业化的时间暂定为2020年。然而,近年来互联网流量消耗量不断升高,市场方面需求紧迫,再加之第五代移动通信技术在未来战略中占据着重要的位置,因此,市场上早已开始了对5G网络技术的研究,5G网络的需求正变得越来越迫切。
在国内市场,部分企业和组织也顺应时代的发展,接连开启了对5G网络的技术攻关。国际上更是如此,各国电信运营商争相提出自己的5G设想,并且都在对自己的方案进行技术论证。显然,不管是国外还是国内,无论是运营商还是设备商,都开始了对5G技术研究的漫漫长路。各组织之间的较量对达成行业内的技术共识是十分重要的,对于行业巨头来说,这是获取专利抢占技术高地,决胜未来的关键时期。现在的5G技术,还没有在关键领域达成技术共识。也正因如此,移动通信领域将迎来巨大的变革,这也将带来前所未有的机遇和挑战。
一、将SDN和NFV引入5G网络架构所带来的好处
SDN严格来说是一种网络创新架构,它有一些明显的特点:
1)控制部分与转发部分是隔离开的;
2)控制集中化;
3)用到的软件接口都是被广泛定义的。
核心要点在于,把控制面与数据面隔开,转发的功能仅由硬件设备的下层实现,其上层则分离,用于集中实现控制,从而实现网络应用与功能的可编程性。在集中化的控制系统中,可以掌握所有用户的网络使用情况,进而在全局上对网络流量进行宏观调控,合理配制网络***,提高对***的利用率。
在未来的网络中可以科学合理的利用SDN的这些优势,使其可以在网络通信行业大展拳脚。正是由于SDN技术的合理运用,才使得移动网络的基本功能得到更加有效地发挥,这也使其纵向融合变成现实,简化网络的同时可以适应逐渐增长的接入速率。追根溯源,SDN首创于斯坦福大学,而NFV的概念则来源于运营商联盟,他们的目的在于处理硬件设施笨重、传统与难以拓展等问题的同时,可以更好地使用现有的网络,使得投资利益最大化。
在不久前发布的NFV***中可以了解到,他们对于SDN与NFV的关系是这样定义的:首先,这两者有着一种互补关系,他们是可以实现融合的,不过两者并没有依赖关系,换句话说,也就是NFV可以实现独立的布置,而不用考虑SDN的影响。但是两者是存在互补性的,其主要表现在SDN能使NFV具有更大的兼容性和操作简便的特点,反过来,NFV的虚拟化等技术则可以提升SDN的灵活性。
二、目标网络架构初探
就目前市场现状来看,阿朗及中国的华为、中兴等信息通讯公司、各大主要研究机构与论坛等争相提出自己设想的5G***,这些***分别承载了各大公司对5G网络时代的展望,对市场供需关系的理解。当今世界的5G网络架构并不成熟,几乎所有构想都处于刚刚提出,正在进行技术认证的阶段。
在SDN与NFV等基础思想的指导下,设计的5G移动通信网络架构主要有以下三种设计思路:
(1)对网元功能***用划分处理
当前的网络有着封闭且无序的特点,甚至部分功能存在相互冲突的情况,这就需要重新定义网络功能,进行更加清晰地梳理和划分。第一步要做的就是将控制端与转发端进行分离,以及实现软件与硬件的解耦。通过分离可以实现将控制功能全部置于SDN控制器之上的目的,在转发面使用合适的转发设备,一般都是标准件,其优势在于成本低廉,他们在同一接口实现连接。在控制面和转发面上均可以实现扩容或升级功能,这就使得设备愈发便捷高效。
(2)网络功能抽象
在对各部分网元功能进行分开处理之后,还需要做共性提取的工作,经过一定规律的封装,将具有不同功能的模块分离出来,对各模块之间使用的连接口均***用标准件。对比于未划分之前的网络功能,经过分解的网络功能模块将变得越来越多,这就将使得接口和协议变得极为复杂。
经过抽象处理实现网络功能的模块化,在各功能模块之间使用API接口,使得他们更加具有开放性,在相关标准的基础上对其进行重组,让重组后的网元功能具有全网视图,同时尽量满足用户的需求,为客户带来最佳的业务数据流传送与整合方法,进而实现网络***的合理利用,强化互联网的服务能力。
当今的互联网技术发展日新月异,基于互联网行业的创新实践多如牛毛,这一切的一切都与其使用公共硬件平台,让客户使用开放的API接口,简化民众创新环节,减少创新要求有着极为重要的联系。故而,将API公布给开发者,使其随意使用,互联网的设计与开发突破传统的只针对运营商,转变为面向更为广大的用户群体,让运营商有着更加灵便的网络能力,进而解决已有的.因硬件问题而引发的升级困难、扩展性差等缺点。
(3)网络功能重构
将已经开放接口的各功能子模块分选出来,按照一定的需求进行组合使用,这样一来不但可以拥有基础的现有网络的基本功能,更重要的是可以让各组件相互独立,甚至实现动态性的伸缩,与此同时,可以结合未来的发展趋势进行快速研发、调试和合理布置,体现全新的功能。因此,在这个基础之上网络***就能够实现共享,而且还能在实际业务的要求下进行按需编排和故障隔离等。这其实也就是进行重新划分并抽象的目的所在。
众所周知,IT技术具有灵活快速的优点,这一点也被电信网络所学习,在即将到来的5G时代,其网络架构将不可能是以往的固定、封闭的架构,取而代之的将是一个全新的依托于虚拟化技术的构架。对现有的模块进行划分及重组之后,不但可以实现最为基本的现有的网络功能,而且更重要的是可以减持冗余。举例说明,比如一些模块的功能或业务已然超过了使用寿命,而且也达到了退出市场的条件。但实际真的如此吗?根据测算其现有电路交换机的两千余个功能使用率甚至不超过百分之一,在模块化的基础之上,运营商就能够根据自己的实际需求进行选择,在最大限度利用投资***的同时做到省去无用花费的目标。
三、结束语
文章在SDN和NFV技术的基础上,实现现有网络的解耦、抽象和重构,提出了一些创造性的使用设想,比如控制面与转发面实现分离、控制集中化、可编程的未来移动通信网络架构,并对未来移动通信的网络架构***取了试探性的摸索。经过总结分析可以知道,基于SDN和NFV的新型网络架构,不但能解决传统架构固有的一些缺点,还能够满足未来不断增多的新业务对网络可编程和快速响应的要求。
;
关于新型网络架构技术抗毁重组和新型网络架构技术抗毁重组原则的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。